![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj986 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj69 34641. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj986.3 | ⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
bnj986.10 | ⊢ 𝐷 = (ω ∖ {∅}) |
bnj986.15 | ⊢ (𝜏 ↔ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) |
Ref | Expression |
---|---|
bnj986 | ⊢ (𝜒 → ∃𝑚∃𝑝𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj986.3 | . . . . . 6 ⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) | |
2 | bnj986.10 | . . . . . . 7 ⊢ 𝐷 = (ω ∖ {∅}) | |
3 | 2 | bnj158 34360 | . . . . . 6 ⊢ (𝑛 ∈ 𝐷 → ∃𝑚 ∈ ω 𝑛 = suc 𝑚) |
4 | 1, 3 | bnj769 34393 | . . . . 5 ⊢ (𝜒 → ∃𝑚 ∈ ω 𝑛 = suc 𝑚) |
5 | 4 | bnj1196 34425 | . . . 4 ⊢ (𝜒 → ∃𝑚(𝑚 ∈ ω ∧ 𝑛 = suc 𝑚)) |
6 | vex 3475 | . . . . . 6 ⊢ 𝑛 ∈ V | |
7 | 6 | sucex 7809 | . . . . 5 ⊢ suc 𝑛 ∈ V |
8 | 7 | isseti 3487 | . . . 4 ⊢ ∃𝑝 𝑝 = suc 𝑛 |
9 | 5, 8 | jctir 520 | . . 3 ⊢ (𝜒 → (∃𝑚(𝑚 ∈ ω ∧ 𝑛 = suc 𝑚) ∧ ∃𝑝 𝑝 = suc 𝑛)) |
10 | exdistr 1951 | . . . 4 ⊢ (∃𝑚∃𝑝((𝑚 ∈ ω ∧ 𝑛 = suc 𝑚) ∧ 𝑝 = suc 𝑛) ↔ ∃𝑚((𝑚 ∈ ω ∧ 𝑛 = suc 𝑚) ∧ ∃𝑝 𝑝 = suc 𝑛)) | |
11 | 19.41v 1946 | . . . 4 ⊢ (∃𝑚((𝑚 ∈ ω ∧ 𝑛 = suc 𝑚) ∧ ∃𝑝 𝑝 = suc 𝑛) ↔ (∃𝑚(𝑚 ∈ ω ∧ 𝑛 = suc 𝑚) ∧ ∃𝑝 𝑝 = suc 𝑛)) | |
12 | 10, 11 | bitr2i 276 | . . 3 ⊢ ((∃𝑚(𝑚 ∈ ω ∧ 𝑛 = suc 𝑚) ∧ ∃𝑝 𝑝 = suc 𝑛) ↔ ∃𝑚∃𝑝((𝑚 ∈ ω ∧ 𝑛 = suc 𝑚) ∧ 𝑝 = suc 𝑛)) |
13 | 9, 12 | sylib 217 | . 2 ⊢ (𝜒 → ∃𝑚∃𝑝((𝑚 ∈ ω ∧ 𝑛 = suc 𝑚) ∧ 𝑝 = suc 𝑛)) |
14 | bnj986.15 | . . . 4 ⊢ (𝜏 ↔ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) | |
15 | df-3an 1087 | . . . 4 ⊢ ((𝑚 ∈ ω ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ↔ ((𝑚 ∈ ω ∧ 𝑛 = suc 𝑚) ∧ 𝑝 = suc 𝑛)) | |
16 | 14, 15 | bitri 275 | . . 3 ⊢ (𝜏 ↔ ((𝑚 ∈ ω ∧ 𝑛 = suc 𝑚) ∧ 𝑝 = suc 𝑛)) |
17 | 16 | 2exbii 1844 | . 2 ⊢ (∃𝑚∃𝑝𝜏 ↔ ∃𝑚∃𝑝((𝑚 ∈ ω ∧ 𝑛 = suc 𝑚) ∧ 𝑝 = suc 𝑛)) |
18 | 13, 17 | sylibr 233 | 1 ⊢ (𝜒 → ∃𝑚∃𝑝𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∃wex 1774 ∈ wcel 2099 ∃wrex 3067 ∖ cdif 3944 ∅c0 4323 {csn 4629 suc csuc 6371 Fn wfn 6543 ωcom 7870 ∧ w-bnj17 34317 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-tr 5266 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-om 7871 df-bnj17 34318 |
This theorem is referenced by: bnj996 34587 |
Copyright terms: Public domain | W3C validator |