Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj986 Structured version   Visualization version   GIF version

Theorem bnj986 34948
Description: Technical lemma for bnj69 35003. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj986.3 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
bnj986.10 𝐷 = (ω ∖ {∅})
bnj986.15 (𝜏 ↔ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚𝑝 = suc 𝑛))
Assertion
Ref Expression
bnj986 (𝜒 → ∃𝑚𝑝𝜏)
Distinct variable group:   𝑚,𝑛,𝑝
Allowed substitution hints:   𝜑(𝑓,𝑚,𝑛,𝑝)   𝜓(𝑓,𝑚,𝑛,𝑝)   𝜒(𝑓,𝑚,𝑛,𝑝)   𝜏(𝑓,𝑚,𝑛,𝑝)   𝐷(𝑓,𝑚,𝑛,𝑝)

Proof of Theorem bnj986
StepHypRef Expression
1 bnj986.3 . . . . . 6 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
2 bnj986.10 . . . . . . 7 𝐷 = (ω ∖ {∅})
32bnj158 34722 . . . . . 6 (𝑛𝐷 → ∃𝑚 ∈ ω 𝑛 = suc 𝑚)
41, 3bnj769 34755 . . . . 5 (𝜒 → ∃𝑚 ∈ ω 𝑛 = suc 𝑚)
54bnj1196 34787 . . . 4 (𝜒 → ∃𝑚(𝑚 ∈ ω ∧ 𝑛 = suc 𝑚))
6 vex 3482 . . . . . 6 𝑛 ∈ V
76sucex 7826 . . . . 5 suc 𝑛 ∈ V
87isseti 3496 . . . 4 𝑝 𝑝 = suc 𝑛
95, 8jctir 520 . . 3 (𝜒 → (∃𝑚(𝑚 ∈ ω ∧ 𝑛 = suc 𝑚) ∧ ∃𝑝 𝑝 = suc 𝑛))
10 exdistr 1952 . . . 4 (∃𝑚𝑝((𝑚 ∈ ω ∧ 𝑛 = suc 𝑚) ∧ 𝑝 = suc 𝑛) ↔ ∃𝑚((𝑚 ∈ ω ∧ 𝑛 = suc 𝑚) ∧ ∃𝑝 𝑝 = suc 𝑛))
11 19.41v 1947 . . . 4 (∃𝑚((𝑚 ∈ ω ∧ 𝑛 = suc 𝑚) ∧ ∃𝑝 𝑝 = suc 𝑛) ↔ (∃𝑚(𝑚 ∈ ω ∧ 𝑛 = suc 𝑚) ∧ ∃𝑝 𝑝 = suc 𝑛))
1210, 11bitr2i 276 . . 3 ((∃𝑚(𝑚 ∈ ω ∧ 𝑛 = suc 𝑚) ∧ ∃𝑝 𝑝 = suc 𝑛) ↔ ∃𝑚𝑝((𝑚 ∈ ω ∧ 𝑛 = suc 𝑚) ∧ 𝑝 = suc 𝑛))
139, 12sylib 218 . 2 (𝜒 → ∃𝑚𝑝((𝑚 ∈ ω ∧ 𝑛 = suc 𝑚) ∧ 𝑝 = suc 𝑛))
14 bnj986.15 . . . 4 (𝜏 ↔ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚𝑝 = suc 𝑛))
15 df-3an 1088 . . . 4 ((𝑚 ∈ ω ∧ 𝑛 = suc 𝑚𝑝 = suc 𝑛) ↔ ((𝑚 ∈ ω ∧ 𝑛 = suc 𝑚) ∧ 𝑝 = suc 𝑛))
1614, 15bitri 275 . . 3 (𝜏 ↔ ((𝑚 ∈ ω ∧ 𝑛 = suc 𝑚) ∧ 𝑝 = suc 𝑛))
17162exbii 1846 . 2 (∃𝑚𝑝𝜏 ↔ ∃𝑚𝑝((𝑚 ∈ ω ∧ 𝑛 = suc 𝑚) ∧ 𝑝 = suc 𝑛))
1813, 17sylibr 234 1 (𝜒 → ∃𝑚𝑝𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wex 1776  wcel 2106  wrex 3068  cdif 3960  c0 4339  {csn 4631  suc csuc 6388   Fn wfn 6558  ωcom 7887  w-bnj17 34679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-tr 5266  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-om 7888  df-bnj17 34680
This theorem is referenced by:  bnj996  34949
  Copyright terms: Public domain W3C validator