Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj986 Structured version   Visualization version   GIF version

Theorem bnj986 34495
Description: Technical lemma for bnj69 34550. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj986.3 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
bnj986.10 𝐷 = (ω ∖ {∅})
bnj986.15 (𝜏 ↔ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚𝑝 = suc 𝑛))
Assertion
Ref Expression
bnj986 (𝜒 → ∃𝑚𝑝𝜏)
Distinct variable group:   𝑚,𝑛,𝑝
Allowed substitution hints:   𝜑(𝑓,𝑚,𝑛,𝑝)   𝜓(𝑓,𝑚,𝑛,𝑝)   𝜒(𝑓,𝑚,𝑛,𝑝)   𝜏(𝑓,𝑚,𝑛,𝑝)   𝐷(𝑓,𝑚,𝑛,𝑝)

Proof of Theorem bnj986
StepHypRef Expression
1 bnj986.3 . . . . . 6 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
2 bnj986.10 . . . . . . 7 𝐷 = (ω ∖ {∅})
32bnj158 34269 . . . . . 6 (𝑛𝐷 → ∃𝑚 ∈ ω 𝑛 = suc 𝑚)
41, 3bnj769 34302 . . . . 5 (𝜒 → ∃𝑚 ∈ ω 𝑛 = suc 𝑚)
54bnj1196 34334 . . . 4 (𝜒 → ∃𝑚(𝑚 ∈ ω ∧ 𝑛 = suc 𝑚))
6 vex 3472 . . . . . 6 𝑛 ∈ V
76sucex 7790 . . . . 5 suc 𝑛 ∈ V
87isseti 3484 . . . 4 𝑝 𝑝 = suc 𝑛
95, 8jctir 520 . . 3 (𝜒 → (∃𝑚(𝑚 ∈ ω ∧ 𝑛 = suc 𝑚) ∧ ∃𝑝 𝑝 = suc 𝑛))
10 exdistr 1950 . . . 4 (∃𝑚𝑝((𝑚 ∈ ω ∧ 𝑛 = suc 𝑚) ∧ 𝑝 = suc 𝑛) ↔ ∃𝑚((𝑚 ∈ ω ∧ 𝑛 = suc 𝑚) ∧ ∃𝑝 𝑝 = suc 𝑛))
11 19.41v 1945 . . . 4 (∃𝑚((𝑚 ∈ ω ∧ 𝑛 = suc 𝑚) ∧ ∃𝑝 𝑝 = suc 𝑛) ↔ (∃𝑚(𝑚 ∈ ω ∧ 𝑛 = suc 𝑚) ∧ ∃𝑝 𝑝 = suc 𝑛))
1210, 11bitr2i 276 . . 3 ((∃𝑚(𝑚 ∈ ω ∧ 𝑛 = suc 𝑚) ∧ ∃𝑝 𝑝 = suc 𝑛) ↔ ∃𝑚𝑝((𝑚 ∈ ω ∧ 𝑛 = suc 𝑚) ∧ 𝑝 = suc 𝑛))
139, 12sylib 217 . 2 (𝜒 → ∃𝑚𝑝((𝑚 ∈ ω ∧ 𝑛 = suc 𝑚) ∧ 𝑝 = suc 𝑛))
14 bnj986.15 . . . 4 (𝜏 ↔ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚𝑝 = suc 𝑛))
15 df-3an 1086 . . . 4 ((𝑚 ∈ ω ∧ 𝑛 = suc 𝑚𝑝 = suc 𝑛) ↔ ((𝑚 ∈ ω ∧ 𝑛 = suc 𝑚) ∧ 𝑝 = suc 𝑛))
1614, 15bitri 275 . . 3 (𝜏 ↔ ((𝑚 ∈ ω ∧ 𝑛 = suc 𝑚) ∧ 𝑝 = suc 𝑛))
17162exbii 1843 . 2 (∃𝑚𝑝𝜏 ↔ ∃𝑚𝑝((𝑚 ∈ ω ∧ 𝑛 = suc 𝑚) ∧ 𝑝 = suc 𝑛))
1813, 17sylibr 233 1 (𝜒 → ∃𝑚𝑝𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1084   = wceq 1533  wex 1773  wcel 2098  wrex 3064  cdif 3940  c0 4317  {csn 4623  suc csuc 6359   Fn wfn 6531  ωcom 7851  w-bnj17 34226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-tr 5259  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-om 7852  df-bnj17 34227
This theorem is referenced by:  bnj996  34496
  Copyright terms: Public domain W3C validator