Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj986 Structured version   Visualization version   GIF version

Theorem bnj986 32222
Description: Technical lemma for bnj69 32277. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj986.3 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
bnj986.10 𝐷 = (ω ∖ {∅})
bnj986.15 (𝜏 ↔ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚𝑝 = suc 𝑛))
Assertion
Ref Expression
bnj986 (𝜒 → ∃𝑚𝑝𝜏)
Distinct variable group:   𝑚,𝑛,𝑝
Allowed substitution hints:   𝜑(𝑓,𝑚,𝑛,𝑝)   𝜓(𝑓,𝑚,𝑛,𝑝)   𝜒(𝑓,𝑚,𝑛,𝑝)   𝜏(𝑓,𝑚,𝑛,𝑝)   𝐷(𝑓,𝑚,𝑛,𝑝)

Proof of Theorem bnj986
StepHypRef Expression
1 bnj986.3 . . . . . 6 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
2 bnj986.10 . . . . . . 7 𝐷 = (ω ∖ {∅})
32bnj158 31994 . . . . . 6 (𝑛𝐷 → ∃𝑚 ∈ ω 𝑛 = suc 𝑚)
41, 3bnj769 32028 . . . . 5 (𝜒 → ∃𝑚 ∈ ω 𝑛 = suc 𝑚)
54bnj1196 32061 . . . 4 (𝜒 → ∃𝑚(𝑚 ∈ ω ∧ 𝑛 = suc 𝑚))
6 vex 3497 . . . . . 6 𝑛 ∈ V
76sucex 7520 . . . . 5 suc 𝑛 ∈ V
87isseti 3508 . . . 4 𝑝 𝑝 = suc 𝑛
95, 8jctir 523 . . 3 (𝜒 → (∃𝑚(𝑚 ∈ ω ∧ 𝑛 = suc 𝑚) ∧ ∃𝑝 𝑝 = suc 𝑛))
10 exdistr 1951 . . . 4 (∃𝑚𝑝((𝑚 ∈ ω ∧ 𝑛 = suc 𝑚) ∧ 𝑝 = suc 𝑛) ↔ ∃𝑚((𝑚 ∈ ω ∧ 𝑛 = suc 𝑚) ∧ ∃𝑝 𝑝 = suc 𝑛))
11 19.41v 1946 . . . 4 (∃𝑚((𝑚 ∈ ω ∧ 𝑛 = suc 𝑚) ∧ ∃𝑝 𝑝 = suc 𝑛) ↔ (∃𝑚(𝑚 ∈ ω ∧ 𝑛 = suc 𝑚) ∧ ∃𝑝 𝑝 = suc 𝑛))
1210, 11bitr2i 278 . . 3 ((∃𝑚(𝑚 ∈ ω ∧ 𝑛 = suc 𝑚) ∧ ∃𝑝 𝑝 = suc 𝑛) ↔ ∃𝑚𝑝((𝑚 ∈ ω ∧ 𝑛 = suc 𝑚) ∧ 𝑝 = suc 𝑛))
139, 12sylib 220 . 2 (𝜒 → ∃𝑚𝑝((𝑚 ∈ ω ∧ 𝑛 = suc 𝑚) ∧ 𝑝 = suc 𝑛))
14 bnj986.15 . . . 4 (𝜏 ↔ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚𝑝 = suc 𝑛))
15 df-3an 1085 . . . 4 ((𝑚 ∈ ω ∧ 𝑛 = suc 𝑚𝑝 = suc 𝑛) ↔ ((𝑚 ∈ ω ∧ 𝑛 = suc 𝑚) ∧ 𝑝 = suc 𝑛))
1614, 15bitri 277 . . 3 (𝜏 ↔ ((𝑚 ∈ ω ∧ 𝑛 = suc 𝑚) ∧ 𝑝 = suc 𝑛))
17162exbii 1845 . 2 (∃𝑚𝑝𝜏 ↔ ∃𝑚𝑝((𝑚 ∈ ω ∧ 𝑛 = suc 𝑚) ∧ 𝑝 = suc 𝑛))
1813, 17sylibr 236 1 (𝜒 → ∃𝑚𝑝𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wex 1776  wcel 2110  wrex 3139  cdif 3932  c0 4290  {csn 4560  suc csuc 6187   Fn wfn 6344  ωcom 7574  w-bnj17 31951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-br 5059  df-opab 5121  df-tr 5165  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-om 7575  df-bnj17 31952
This theorem is referenced by:  bnj996  32223
  Copyright terms: Public domain W3C validator