Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj986 Structured version   Visualization version   GIF version

Theorem bnj986 34586
Description: Technical lemma for bnj69 34641. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj986.3 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
bnj986.10 𝐷 = (ω ∖ {∅})
bnj986.15 (𝜏 ↔ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚𝑝 = suc 𝑛))
Assertion
Ref Expression
bnj986 (𝜒 → ∃𝑚𝑝𝜏)
Distinct variable group:   𝑚,𝑛,𝑝
Allowed substitution hints:   𝜑(𝑓,𝑚,𝑛,𝑝)   𝜓(𝑓,𝑚,𝑛,𝑝)   𝜒(𝑓,𝑚,𝑛,𝑝)   𝜏(𝑓,𝑚,𝑛,𝑝)   𝐷(𝑓,𝑚,𝑛,𝑝)

Proof of Theorem bnj986
StepHypRef Expression
1 bnj986.3 . . . . . 6 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
2 bnj986.10 . . . . . . 7 𝐷 = (ω ∖ {∅})
32bnj158 34360 . . . . . 6 (𝑛𝐷 → ∃𝑚 ∈ ω 𝑛 = suc 𝑚)
41, 3bnj769 34393 . . . . 5 (𝜒 → ∃𝑚 ∈ ω 𝑛 = suc 𝑚)
54bnj1196 34425 . . . 4 (𝜒 → ∃𝑚(𝑚 ∈ ω ∧ 𝑛 = suc 𝑚))
6 vex 3475 . . . . . 6 𝑛 ∈ V
76sucex 7809 . . . . 5 suc 𝑛 ∈ V
87isseti 3487 . . . 4 𝑝 𝑝 = suc 𝑛
95, 8jctir 520 . . 3 (𝜒 → (∃𝑚(𝑚 ∈ ω ∧ 𝑛 = suc 𝑚) ∧ ∃𝑝 𝑝 = suc 𝑛))
10 exdistr 1951 . . . 4 (∃𝑚𝑝((𝑚 ∈ ω ∧ 𝑛 = suc 𝑚) ∧ 𝑝 = suc 𝑛) ↔ ∃𝑚((𝑚 ∈ ω ∧ 𝑛 = suc 𝑚) ∧ ∃𝑝 𝑝 = suc 𝑛))
11 19.41v 1946 . . . 4 (∃𝑚((𝑚 ∈ ω ∧ 𝑛 = suc 𝑚) ∧ ∃𝑝 𝑝 = suc 𝑛) ↔ (∃𝑚(𝑚 ∈ ω ∧ 𝑛 = suc 𝑚) ∧ ∃𝑝 𝑝 = suc 𝑛))
1210, 11bitr2i 276 . . 3 ((∃𝑚(𝑚 ∈ ω ∧ 𝑛 = suc 𝑚) ∧ ∃𝑝 𝑝 = suc 𝑛) ↔ ∃𝑚𝑝((𝑚 ∈ ω ∧ 𝑛 = suc 𝑚) ∧ 𝑝 = suc 𝑛))
139, 12sylib 217 . 2 (𝜒 → ∃𝑚𝑝((𝑚 ∈ ω ∧ 𝑛 = suc 𝑚) ∧ 𝑝 = suc 𝑛))
14 bnj986.15 . . . 4 (𝜏 ↔ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚𝑝 = suc 𝑛))
15 df-3an 1087 . . . 4 ((𝑚 ∈ ω ∧ 𝑛 = suc 𝑚𝑝 = suc 𝑛) ↔ ((𝑚 ∈ ω ∧ 𝑛 = suc 𝑚) ∧ 𝑝 = suc 𝑛))
1614, 15bitri 275 . . 3 (𝜏 ↔ ((𝑚 ∈ ω ∧ 𝑛 = suc 𝑚) ∧ 𝑝 = suc 𝑛))
17162exbii 1844 . 2 (∃𝑚𝑝𝜏 ↔ ∃𝑚𝑝((𝑚 ∈ ω ∧ 𝑛 = suc 𝑚) ∧ 𝑝 = suc 𝑛))
1813, 17sylibr 233 1 (𝜒 → ∃𝑚𝑝𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wex 1774  wcel 2099  wrex 3067  cdif 3944  c0 4323  {csn 4629  suc csuc 6371   Fn wfn 6543  ωcom 7870  w-bnj17 34317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pr 5429  ax-un 7740
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-tr 5266  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-om 7871  df-bnj17 34318
This theorem is referenced by:  bnj996  34587
  Copyright terms: Public domain W3C validator