| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj986 | Structured version Visualization version GIF version | ||
| Description: Technical lemma for bnj69 35007. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj986.3 | ⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
| bnj986.10 | ⊢ 𝐷 = (ω ∖ {∅}) |
| bnj986.15 | ⊢ (𝜏 ↔ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) |
| Ref | Expression |
|---|---|
| bnj986 | ⊢ (𝜒 → ∃𝑚∃𝑝𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj986.3 | . . . . . 6 ⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) | |
| 2 | bnj986.10 | . . . . . . 7 ⊢ 𝐷 = (ω ∖ {∅}) | |
| 3 | 2 | bnj158 34726 | . . . . . 6 ⊢ (𝑛 ∈ 𝐷 → ∃𝑚 ∈ ω 𝑛 = suc 𝑚) |
| 4 | 1, 3 | bnj769 34759 | . . . . 5 ⊢ (𝜒 → ∃𝑚 ∈ ω 𝑛 = suc 𝑚) |
| 5 | 4 | bnj1196 34791 | . . . 4 ⊢ (𝜒 → ∃𝑚(𝑚 ∈ ω ∧ 𝑛 = suc 𝑚)) |
| 6 | vex 3454 | . . . . . 6 ⊢ 𝑛 ∈ V | |
| 7 | 6 | sucex 7785 | . . . . 5 ⊢ suc 𝑛 ∈ V |
| 8 | 7 | isseti 3468 | . . . 4 ⊢ ∃𝑝 𝑝 = suc 𝑛 |
| 9 | 5, 8 | jctir 520 | . . 3 ⊢ (𝜒 → (∃𝑚(𝑚 ∈ ω ∧ 𝑛 = suc 𝑚) ∧ ∃𝑝 𝑝 = suc 𝑛)) |
| 10 | exdistr 1954 | . . . 4 ⊢ (∃𝑚∃𝑝((𝑚 ∈ ω ∧ 𝑛 = suc 𝑚) ∧ 𝑝 = suc 𝑛) ↔ ∃𝑚((𝑚 ∈ ω ∧ 𝑛 = suc 𝑚) ∧ ∃𝑝 𝑝 = suc 𝑛)) | |
| 11 | 19.41v 1949 | . . . 4 ⊢ (∃𝑚((𝑚 ∈ ω ∧ 𝑛 = suc 𝑚) ∧ ∃𝑝 𝑝 = suc 𝑛) ↔ (∃𝑚(𝑚 ∈ ω ∧ 𝑛 = suc 𝑚) ∧ ∃𝑝 𝑝 = suc 𝑛)) | |
| 12 | 10, 11 | bitr2i 276 | . . 3 ⊢ ((∃𝑚(𝑚 ∈ ω ∧ 𝑛 = suc 𝑚) ∧ ∃𝑝 𝑝 = suc 𝑛) ↔ ∃𝑚∃𝑝((𝑚 ∈ ω ∧ 𝑛 = suc 𝑚) ∧ 𝑝 = suc 𝑛)) |
| 13 | 9, 12 | sylib 218 | . 2 ⊢ (𝜒 → ∃𝑚∃𝑝((𝑚 ∈ ω ∧ 𝑛 = suc 𝑚) ∧ 𝑝 = suc 𝑛)) |
| 14 | bnj986.15 | . . . 4 ⊢ (𝜏 ↔ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) | |
| 15 | df-3an 1088 | . . . 4 ⊢ ((𝑚 ∈ ω ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ↔ ((𝑚 ∈ ω ∧ 𝑛 = suc 𝑚) ∧ 𝑝 = suc 𝑛)) | |
| 16 | 14, 15 | bitri 275 | . . 3 ⊢ (𝜏 ↔ ((𝑚 ∈ ω ∧ 𝑛 = suc 𝑚) ∧ 𝑝 = suc 𝑛)) |
| 17 | 16 | 2exbii 1849 | . 2 ⊢ (∃𝑚∃𝑝𝜏 ↔ ∃𝑚∃𝑝((𝑚 ∈ ω ∧ 𝑛 = suc 𝑚) ∧ 𝑝 = suc 𝑛)) |
| 18 | 13, 17 | sylibr 234 | 1 ⊢ (𝜒 → ∃𝑚∃𝑝𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∃wrex 3054 ∖ cdif 3914 ∅c0 4299 {csn 4592 suc csuc 6337 Fn wfn 6509 ωcom 7845 ∧ w-bnj17 34683 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-tr 5218 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-om 7846 df-bnj17 34684 |
| This theorem is referenced by: bnj996 34953 |
| Copyright terms: Public domain | W3C validator |