![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj986 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj69 34986. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj986.3 | ⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
bnj986.10 | ⊢ 𝐷 = (ω ∖ {∅}) |
bnj986.15 | ⊢ (𝜏 ↔ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) |
Ref | Expression |
---|---|
bnj986 | ⊢ (𝜒 → ∃𝑚∃𝑝𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj986.3 | . . . . . 6 ⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) | |
2 | bnj986.10 | . . . . . . 7 ⊢ 𝐷 = (ω ∖ {∅}) | |
3 | 2 | bnj158 34705 | . . . . . 6 ⊢ (𝑛 ∈ 𝐷 → ∃𝑚 ∈ ω 𝑛 = suc 𝑚) |
4 | 1, 3 | bnj769 34738 | . . . . 5 ⊢ (𝜒 → ∃𝑚 ∈ ω 𝑛 = suc 𝑚) |
5 | 4 | bnj1196 34770 | . . . 4 ⊢ (𝜒 → ∃𝑚(𝑚 ∈ ω ∧ 𝑛 = suc 𝑚)) |
6 | vex 3492 | . . . . . 6 ⊢ 𝑛 ∈ V | |
7 | 6 | sucex 7842 | . . . . 5 ⊢ suc 𝑛 ∈ V |
8 | 7 | isseti 3506 | . . . 4 ⊢ ∃𝑝 𝑝 = suc 𝑛 |
9 | 5, 8 | jctir 520 | . . 3 ⊢ (𝜒 → (∃𝑚(𝑚 ∈ ω ∧ 𝑛 = suc 𝑚) ∧ ∃𝑝 𝑝 = suc 𝑛)) |
10 | exdistr 1954 | . . . 4 ⊢ (∃𝑚∃𝑝((𝑚 ∈ ω ∧ 𝑛 = suc 𝑚) ∧ 𝑝 = suc 𝑛) ↔ ∃𝑚((𝑚 ∈ ω ∧ 𝑛 = suc 𝑚) ∧ ∃𝑝 𝑝 = suc 𝑛)) | |
11 | 19.41v 1949 | . . . 4 ⊢ (∃𝑚((𝑚 ∈ ω ∧ 𝑛 = suc 𝑚) ∧ ∃𝑝 𝑝 = suc 𝑛) ↔ (∃𝑚(𝑚 ∈ ω ∧ 𝑛 = suc 𝑚) ∧ ∃𝑝 𝑝 = suc 𝑛)) | |
12 | 10, 11 | bitr2i 276 | . . 3 ⊢ ((∃𝑚(𝑚 ∈ ω ∧ 𝑛 = suc 𝑚) ∧ ∃𝑝 𝑝 = suc 𝑛) ↔ ∃𝑚∃𝑝((𝑚 ∈ ω ∧ 𝑛 = suc 𝑚) ∧ 𝑝 = suc 𝑛)) |
13 | 9, 12 | sylib 218 | . 2 ⊢ (𝜒 → ∃𝑚∃𝑝((𝑚 ∈ ω ∧ 𝑛 = suc 𝑚) ∧ 𝑝 = suc 𝑛)) |
14 | bnj986.15 | . . . 4 ⊢ (𝜏 ↔ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) | |
15 | df-3an 1089 | . . . 4 ⊢ ((𝑚 ∈ ω ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ↔ ((𝑚 ∈ ω ∧ 𝑛 = suc 𝑚) ∧ 𝑝 = suc 𝑛)) | |
16 | 14, 15 | bitri 275 | . . 3 ⊢ (𝜏 ↔ ((𝑚 ∈ ω ∧ 𝑛 = suc 𝑚) ∧ 𝑝 = suc 𝑛)) |
17 | 16 | 2exbii 1847 | . 2 ⊢ (∃𝑚∃𝑝𝜏 ↔ ∃𝑚∃𝑝((𝑚 ∈ ω ∧ 𝑛 = suc 𝑚) ∧ 𝑝 = suc 𝑛)) |
18 | 13, 17 | sylibr 234 | 1 ⊢ (𝜒 → ∃𝑚∃𝑝𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∃wex 1777 ∈ wcel 2108 ∃wrex 3076 ∖ cdif 3973 ∅c0 4352 {csn 4648 suc csuc 6397 Fn wfn 6568 ωcom 7903 ∧ w-bnj17 34662 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-tr 5284 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-om 7904 df-bnj17 34663 |
This theorem is referenced by: bnj996 34932 |
Copyright terms: Public domain | W3C validator |