![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1053 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj69 34674. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1053.1 | ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) |
bnj1053.2 | ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
bnj1053.3 | ⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
bnj1053.4 | ⊢ (𝜃 ↔ (𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴)) |
bnj1053.5 | ⊢ (𝜏 ↔ (𝐵 ∈ V ∧ TrFo(𝐵, 𝐴, 𝑅) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵)) |
bnj1053.6 | ⊢ (𝜁 ↔ (𝑖 ∈ 𝑛 ∧ 𝑧 ∈ (𝑓‘𝑖))) |
bnj1053.7 | ⊢ 𝐷 = (ω ∖ {∅}) |
bnj1053.8 | ⊢ 𝐾 = {𝑓 ∣ ∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)} |
bnj1053.9 | ⊢ (𝜂 ↔ ((𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → 𝑧 ∈ 𝐵)) |
bnj1053.10 | ⊢ (𝜌 ↔ ∀𝑗 ∈ 𝑛 (𝑗 E 𝑖 → [𝑗 / 𝑖]𝜂)) |
bnj1053.37 | ⊢ ((𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → ∀𝑖 ∈ 𝑛 (𝜌 → 𝜂)) |
Ref | Expression |
---|---|
bnj1053 | ⊢ ((𝜃 ∧ 𝜏) → trCl(𝑋, 𝐴, 𝑅) ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1053.1 | . 2 ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) | |
2 | bnj1053.2 | . 2 ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) | |
3 | bnj1053.3 | . 2 ⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) | |
4 | bnj1053.4 | . 2 ⊢ (𝜃 ↔ (𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴)) | |
5 | bnj1053.5 | . 2 ⊢ (𝜏 ↔ (𝐵 ∈ V ∧ TrFo(𝐵, 𝐴, 𝑅) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵)) | |
6 | bnj1053.6 | . 2 ⊢ (𝜁 ↔ (𝑖 ∈ 𝑛 ∧ 𝑧 ∈ (𝑓‘𝑖))) | |
7 | bnj1053.7 | . 2 ⊢ 𝐷 = (ω ∖ {∅}) | |
8 | bnj1053.8 | . 2 ⊢ 𝐾 = {𝑓 ∣ ∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)} | |
9 | bnj1053.9 | . 2 ⊢ (𝜂 ↔ ((𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → 𝑧 ∈ 𝐵)) | |
10 | bnj1053.10 | . 2 ⊢ (𝜌 ↔ ∀𝑗 ∈ 𝑛 (𝑗 E 𝑖 → [𝑗 / 𝑖]𝜂)) | |
11 | 7 | bnj923 34432 | . . . . . 6 ⊢ (𝑛 ∈ 𝐷 → 𝑛 ∈ ω) |
12 | nnord 7884 | . . . . . 6 ⊢ (𝑛 ∈ ω → Ord 𝑛) | |
13 | ordfr 6389 | . . . . . 6 ⊢ (Ord 𝑛 → E Fr 𝑛) | |
14 | 11, 12, 13 | 3syl 18 | . . . . 5 ⊢ (𝑛 ∈ 𝐷 → E Fr 𝑛) |
15 | 3, 14 | bnj769 34426 | . . . 4 ⊢ (𝜒 → E Fr 𝑛) |
16 | 15 | bnj707 34419 | . . 3 ⊢ ((𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → E Fr 𝑛) |
17 | bnj1053.37 | . . 3 ⊢ ((𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → ∀𝑖 ∈ 𝑛 (𝜌 → 𝜂)) | |
18 | 16, 17 | jca 510 | . 2 ⊢ ((𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁) → ( E Fr 𝑛 ∧ ∀𝑖 ∈ 𝑛 (𝜌 → 𝜂))) |
19 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 18 | bnj1052 34639 | 1 ⊢ ((𝜃 ∧ 𝜏) → trCl(𝑋, 𝐴, 𝑅) ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 {cab 2705 ∀wral 3058 ∃wrex 3067 Vcvv 3473 [wsbc 3778 ∖ cdif 3946 ⊆ wss 3949 ∅c0 4326 {csn 4632 ∪ ciun 5000 class class class wbr 5152 E cep 5585 Fr wfr 5634 Ord word 6373 suc csuc 6376 Fn wfn 6548 ‘cfv 6553 ωcom 7876 ∧ w-bnj17 34350 predc-bnj14 34352 FrSe w-bnj15 34356 trClc-bnj18 34358 TrFow-bnj19 34360 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-tr 5270 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-ord 6377 df-on 6378 df-fn 6556 df-om 7877 df-bnj17 34351 df-bnj18 34359 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |