Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1053 Structured version   Visualization version   GIF version

Theorem bnj1053 34952
Description: Technical lemma for bnj69 34986. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1053.1 (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
bnj1053.2 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj1053.3 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
bnj1053.4 (𝜃 ↔ (𝑅 FrSe 𝐴𝑋𝐴))
bnj1053.5 (𝜏 ↔ (𝐵 ∈ V ∧ TrFo(𝐵, 𝐴, 𝑅) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵))
bnj1053.6 (𝜁 ↔ (𝑖𝑛𝑧 ∈ (𝑓𝑖)))
bnj1053.7 𝐷 = (ω ∖ {∅})
bnj1053.8 𝐾 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}
bnj1053.9 (𝜂 ↔ ((𝜃𝜏𝜒𝜁) → 𝑧𝐵))
bnj1053.10 (𝜌 ↔ ∀𝑗𝑛 (𝑗 E 𝑖[𝑗 / 𝑖]𝜂))
bnj1053.37 ((𝜃𝜏𝜒𝜁) → ∀𝑖𝑛 (𝜌𝜂))
Assertion
Ref Expression
bnj1053 ((𝜃𝜏) → trCl(𝑋, 𝐴, 𝑅) ⊆ 𝐵)
Distinct variable groups:   𝐴,𝑓,𝑖,𝑛,𝑦   𝑧,𝐴,𝑓,𝑖,𝑛   𝐵,𝑓,𝑖,𝑛,𝑧   𝐷,𝑖   𝑅,𝑓,𝑖,𝑛,𝑦   𝑧,𝑅   𝑓,𝑋,𝑖,𝑛,𝑦   𝑧,𝑋   𝜂,𝑗   𝜏,𝑓,𝑖,𝑛,𝑧   𝜃,𝑓,𝑖,𝑛,𝑧   𝑖,𝑗,𝑛   𝜑,𝑖
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑓,𝑗,𝑛)   𝜓(𝑦,𝑧,𝑓,𝑖,𝑗,𝑛)   𝜒(𝑦,𝑧,𝑓,𝑖,𝑗,𝑛)   𝜃(𝑦,𝑗)   𝜏(𝑦,𝑗)   𝜂(𝑦,𝑧,𝑓,𝑖,𝑛)   𝜁(𝑦,𝑧,𝑓,𝑖,𝑗,𝑛)   𝜌(𝑦,𝑧,𝑓,𝑖,𝑗,𝑛)   𝐴(𝑗)   𝐵(𝑦,𝑗)   𝐷(𝑦,𝑧,𝑓,𝑗,𝑛)   𝑅(𝑗)   𝐾(𝑦,𝑧,𝑓,𝑖,𝑗,𝑛)   𝑋(𝑗)

Proof of Theorem bnj1053
StepHypRef Expression
1 bnj1053.1 . 2 (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
2 bnj1053.2 . 2 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
3 bnj1053.3 . 2 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
4 bnj1053.4 . 2 (𝜃 ↔ (𝑅 FrSe 𝐴𝑋𝐴))
5 bnj1053.5 . 2 (𝜏 ↔ (𝐵 ∈ V ∧ TrFo(𝐵, 𝐴, 𝑅) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵))
6 bnj1053.6 . 2 (𝜁 ↔ (𝑖𝑛𝑧 ∈ (𝑓𝑖)))
7 bnj1053.7 . 2 𝐷 = (ω ∖ {∅})
8 bnj1053.8 . 2 𝐾 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}
9 bnj1053.9 . 2 (𝜂 ↔ ((𝜃𝜏𝜒𝜁) → 𝑧𝐵))
10 bnj1053.10 . 2 (𝜌 ↔ ∀𝑗𝑛 (𝑗 E 𝑖[𝑗 / 𝑖]𝜂))
117bnj923 34744 . . . . . 6 (𝑛𝐷𝑛 ∈ ω)
12 nnord 7911 . . . . . 6 (𝑛 ∈ ω → Ord 𝑛)
13 ordfr 6410 . . . . . 6 (Ord 𝑛 → E Fr 𝑛)
1411, 12, 133syl 18 . . . . 5 (𝑛𝐷 → E Fr 𝑛)
153, 14bnj769 34738 . . . 4 (𝜒 → E Fr 𝑛)
1615bnj707 34731 . . 3 ((𝜃𝜏𝜒𝜁) → E Fr 𝑛)
17 bnj1053.37 . . 3 ((𝜃𝜏𝜒𝜁) → ∀𝑖𝑛 (𝜌𝜂))
1816, 17jca 511 . 2 ((𝜃𝜏𝜒𝜁) → ( E Fr 𝑛 ∧ ∀𝑖𝑛 (𝜌𝜂)))
191, 2, 3, 4, 5, 6, 7, 8, 9, 10, 18bnj1052 34951 1 ((𝜃𝜏) → trCl(𝑋, 𝐴, 𝑅) ⊆ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  {cab 2717  wral 3067  wrex 3076  Vcvv 3488  [wsbc 3804  cdif 3973  wss 3976  c0 4352  {csn 4648   ciun 5015   class class class wbr 5166   E cep 5598   Fr wfr 5649  Ord word 6394  suc csuc 6397   Fn wfn 6568  cfv 6573  ωcom 7903  w-bnj17 34662   predc-bnj14 34664   FrSe w-bnj15 34668   trClc-bnj18 34670   TrFow-bnj19 34672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-tr 5284  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-ord 6398  df-on 6399  df-fn 6576  df-om 7904  df-bnj17 34663  df-bnj18 34671
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator