![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1133 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj69 34646. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1133.3 | ⊢ 𝐷 = (ω ∖ {∅}) |
bnj1133.5 | ⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
bnj1133.7 | ⊢ (𝜏 ↔ ∀𝑗 ∈ 𝑛 (𝑗 E 𝑖 → [𝑗 / 𝑖]𝜃)) |
bnj1133.8 | ⊢ ((𝑖 ∈ 𝑛 ∧ 𝜏) → 𝜃) |
Ref | Expression |
---|---|
bnj1133 | ⊢ (𝜒 → ∀𝑖 ∈ 𝑛 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1133.5 | . . 3 ⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) | |
2 | bnj1133.3 | . . . 4 ⊢ 𝐷 = (ω ∖ {∅}) | |
3 | 2 | bnj1071 34613 | . . 3 ⊢ (𝑛 ∈ 𝐷 → E Fr 𝑛) |
4 | 1, 3 | bnj769 34398 | . 2 ⊢ (𝜒 → E Fr 𝑛) |
5 | impexp 449 | . . . . . 6 ⊢ (((𝑖 ∈ 𝑛 ∧ 𝜏) → 𝜃) ↔ (𝑖 ∈ 𝑛 → (𝜏 → 𝜃))) | |
6 | 5 | bicomi 223 | . . . . 5 ⊢ ((𝑖 ∈ 𝑛 → (𝜏 → 𝜃)) ↔ ((𝑖 ∈ 𝑛 ∧ 𝜏) → 𝜃)) |
7 | 6 | albii 1813 | . . . 4 ⊢ (∀𝑖(𝑖 ∈ 𝑛 → (𝜏 → 𝜃)) ↔ ∀𝑖((𝑖 ∈ 𝑛 ∧ 𝜏) → 𝜃)) |
8 | bnj1133.8 | . . . 4 ⊢ ((𝑖 ∈ 𝑛 ∧ 𝜏) → 𝜃) | |
9 | 7, 8 | mpgbir 1793 | . . 3 ⊢ ∀𝑖(𝑖 ∈ 𝑛 → (𝜏 → 𝜃)) |
10 | df-ral 3058 | . . 3 ⊢ (∀𝑖 ∈ 𝑛 (𝜏 → 𝜃) ↔ ∀𝑖(𝑖 ∈ 𝑛 → (𝜏 → 𝜃))) | |
11 | 9, 10 | mpbir 230 | . 2 ⊢ ∀𝑖 ∈ 𝑛 (𝜏 → 𝜃) |
12 | vex 3475 | . . 3 ⊢ 𝑛 ∈ V | |
13 | bnj1133.7 | . . 3 ⊢ (𝜏 ↔ ∀𝑗 ∈ 𝑛 (𝑗 E 𝑖 → [𝑗 / 𝑖]𝜃)) | |
14 | 12, 13 | bnj110 34494 | . 2 ⊢ (( E Fr 𝑛 ∧ ∀𝑖 ∈ 𝑛 (𝜏 → 𝜃)) → ∀𝑖 ∈ 𝑛 𝜃) |
15 | 4, 11, 14 | sylancl 584 | 1 ⊢ (𝜒 → ∀𝑖 ∈ 𝑛 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∀wal 1531 = wceq 1533 ∈ wcel 2098 ∀wral 3057 [wsbc 3776 ∖ cdif 3944 ∅c0 4324 {csn 4630 class class class wbr 5150 E cep 5583 Fr wfr 5632 Fn wfn 6546 ωcom 7874 ∧ w-bnj17 34322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-sep 5301 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-br 5151 df-tr 5268 df-po 5592 df-so 5593 df-fr 5635 df-we 5637 df-ord 6375 df-on 6376 df-om 7875 df-bnj17 34323 |
This theorem is referenced by: bnj1128 34626 |
Copyright terms: Public domain | W3C validator |