Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1133 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj69 33096. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1133.3 | ⊢ 𝐷 = (ω ∖ {∅}) |
bnj1133.5 | ⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
bnj1133.7 | ⊢ (𝜏 ↔ ∀𝑗 ∈ 𝑛 (𝑗 E 𝑖 → [𝑗 / 𝑖]𝜃)) |
bnj1133.8 | ⊢ ((𝑖 ∈ 𝑛 ∧ 𝜏) → 𝜃) |
Ref | Expression |
---|---|
bnj1133 | ⊢ (𝜒 → ∀𝑖 ∈ 𝑛 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1133.5 | . . 3 ⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) | |
2 | bnj1133.3 | . . . 4 ⊢ 𝐷 = (ω ∖ {∅}) | |
3 | 2 | bnj1071 33063 | . . 3 ⊢ (𝑛 ∈ 𝐷 → E Fr 𝑛) |
4 | 1, 3 | bnj769 32848 | . 2 ⊢ (𝜒 → E Fr 𝑛) |
5 | impexp 451 | . . . . . 6 ⊢ (((𝑖 ∈ 𝑛 ∧ 𝜏) → 𝜃) ↔ (𝑖 ∈ 𝑛 → (𝜏 → 𝜃))) | |
6 | 5 | bicomi 223 | . . . . 5 ⊢ ((𝑖 ∈ 𝑛 → (𝜏 → 𝜃)) ↔ ((𝑖 ∈ 𝑛 ∧ 𝜏) → 𝜃)) |
7 | 6 | albii 1820 | . . . 4 ⊢ (∀𝑖(𝑖 ∈ 𝑛 → (𝜏 → 𝜃)) ↔ ∀𝑖((𝑖 ∈ 𝑛 ∧ 𝜏) → 𝜃)) |
8 | bnj1133.8 | . . . 4 ⊢ ((𝑖 ∈ 𝑛 ∧ 𝜏) → 𝜃) | |
9 | 7, 8 | mpgbir 1800 | . . 3 ⊢ ∀𝑖(𝑖 ∈ 𝑛 → (𝜏 → 𝜃)) |
10 | df-ral 3063 | . . 3 ⊢ (∀𝑖 ∈ 𝑛 (𝜏 → 𝜃) ↔ ∀𝑖(𝑖 ∈ 𝑛 → (𝜏 → 𝜃))) | |
11 | 9, 10 | mpbir 230 | . 2 ⊢ ∀𝑖 ∈ 𝑛 (𝜏 → 𝜃) |
12 | vex 3445 | . . 3 ⊢ 𝑛 ∈ V | |
13 | bnj1133.7 | . . 3 ⊢ (𝜏 ↔ ∀𝑗 ∈ 𝑛 (𝑗 E 𝑖 → [𝑗 / 𝑖]𝜃)) | |
14 | 12, 13 | bnj110 32944 | . 2 ⊢ (( E Fr 𝑛 ∧ ∀𝑖 ∈ 𝑛 (𝜏 → 𝜃)) → ∀𝑖 ∈ 𝑛 𝜃) |
15 | 4, 11, 14 | sylancl 586 | 1 ⊢ (𝜒 → ∀𝑖 ∈ 𝑛 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1538 = wceq 1540 ∈ wcel 2105 ∀wral 3062 [wsbc 3725 ∖ cdif 3893 ∅c0 4266 {csn 4569 class class class wbr 5085 E cep 5510 Fr wfr 5557 Fn wfn 6458 ωcom 7755 ∧ w-bnj17 32771 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5236 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3443 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4470 df-pw 4545 df-sn 4570 df-pr 4572 df-op 4576 df-uni 4849 df-br 5086 df-tr 5203 df-po 5519 df-so 5520 df-fr 5560 df-we 5562 df-ord 6289 df-on 6290 df-om 7756 df-bnj17 32772 |
This theorem is referenced by: bnj1128 33076 |
Copyright terms: Public domain | W3C validator |