Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1133 Structured version   Visualization version   GIF version

Theorem bnj1133 34986
Description: Technical lemma for bnj69 35007. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1133.3 𝐷 = (ω ∖ {∅})
bnj1133.5 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
bnj1133.7 (𝜏 ↔ ∀𝑗𝑛 (𝑗 E 𝑖[𝑗 / 𝑖]𝜃))
bnj1133.8 ((𝑖𝑛𝜏) → 𝜃)
Assertion
Ref Expression
bnj1133 (𝜒 → ∀𝑖𝑛 𝜃)
Distinct variable groups:   𝑖,𝑗,𝑛   𝜃,𝑗
Allowed substitution hints:   𝜑(𝑓,𝑖,𝑗,𝑛)   𝜓(𝑓,𝑖,𝑗,𝑛)   𝜒(𝑓,𝑖,𝑗,𝑛)   𝜃(𝑓,𝑖,𝑛)   𝜏(𝑓,𝑖,𝑗,𝑛)   𝐷(𝑓,𝑖,𝑗,𝑛)

Proof of Theorem bnj1133
StepHypRef Expression
1 bnj1133.5 . . 3 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
2 bnj1133.3 . . . 4 𝐷 = (ω ∖ {∅})
32bnj1071 34974 . . 3 (𝑛𝐷 → E Fr 𝑛)
41, 3bnj769 34759 . 2 (𝜒 → E Fr 𝑛)
5 impexp 450 . . . . . 6 (((𝑖𝑛𝜏) → 𝜃) ↔ (𝑖𝑛 → (𝜏𝜃)))
65bicomi 224 . . . . 5 ((𝑖𝑛 → (𝜏𝜃)) ↔ ((𝑖𝑛𝜏) → 𝜃))
76albii 1819 . . . 4 (∀𝑖(𝑖𝑛 → (𝜏𝜃)) ↔ ∀𝑖((𝑖𝑛𝜏) → 𝜃))
8 bnj1133.8 . . . 4 ((𝑖𝑛𝜏) → 𝜃)
97, 8mpgbir 1799 . . 3 𝑖(𝑖𝑛 → (𝜏𝜃))
10 df-ral 3046 . . 3 (∀𝑖𝑛 (𝜏𝜃) ↔ ∀𝑖(𝑖𝑛 → (𝜏𝜃)))
119, 10mpbir 231 . 2 𝑖𝑛 (𝜏𝜃)
12 vex 3454 . . 3 𝑛 ∈ V
13 bnj1133.7 . . 3 (𝜏 ↔ ∀𝑗𝑛 (𝑗 E 𝑖[𝑗 / 𝑖]𝜃))
1412, 13bnj110 34855 . 2 (( E Fr 𝑛 ∧ ∀𝑖𝑛 (𝜏𝜃)) → ∀𝑖𝑛 𝜃)
154, 11, 14sylancl 586 1 (𝜒 → ∀𝑖𝑛 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wcel 2109  wral 3045  [wsbc 3756  cdif 3914  c0 4299  {csn 4592   class class class wbr 5110   E cep 5540   Fr wfr 5591   Fn wfn 6509  ωcom 7845  w-bnj17 34683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-tr 5218  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-ord 6338  df-on 6339  df-om 7846  df-bnj17 34684
This theorem is referenced by:  bnj1128  34987
  Copyright terms: Public domain W3C validator