Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1442 Structured version   Visualization version   GIF version

Theorem bnj1442 33070
Description: Technical lemma for bnj60 33083. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1442.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
bnj1442.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1442.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
bnj1442.4 (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
bnj1442.5 𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}
bnj1442.6 (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))
bnj1442.7 (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))
bnj1442.8 (𝜏′[𝑦 / 𝑥]𝜏)
bnj1442.9 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}
bnj1442.10 𝑃 = 𝐻
bnj1442.11 𝑍 = ⟨𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1442.12 𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})
bnj1442.13 𝑊 = ⟨𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))⟩
bnj1442.14 𝐸 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))
bnj1442.15 (𝜒𝑃 Fn trCl(𝑥, 𝐴, 𝑅))
bnj1442.16 (𝜒𝑄 Fn ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))
bnj1442.17 (𝜃 ↔ (𝜒𝑧𝐸))
bnj1442.18 (𝜂 ↔ (𝜃𝑧 ∈ {𝑥}))
Assertion
Ref Expression
bnj1442 (𝜂 → (𝑄𝑧) = (𝐺𝑊))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜓(𝑥,𝑦,𝑧,𝑓,𝑑)   𝜒(𝑥,𝑦,𝑧,𝑓,𝑑)   𝜃(𝑥,𝑦,𝑧,𝑓,𝑑)   𝜏(𝑥,𝑦,𝑧,𝑓,𝑑)   𝜂(𝑥,𝑦,𝑧,𝑓,𝑑)   𝐴(𝑦,𝑧,𝑓,𝑑)   𝐵(𝑥,𝑦,𝑧,𝑓,𝑑)   𝐶(𝑥,𝑦,𝑧,𝑓,𝑑)   𝐷(𝑥,𝑦,𝑧,𝑓,𝑑)   𝑃(𝑥,𝑦,𝑧,𝑓,𝑑)   𝑄(𝑥,𝑦,𝑧,𝑓,𝑑)   𝑅(𝑥,𝑦,𝑧,𝑓,𝑑)   𝐸(𝑥,𝑦,𝑧,𝑓,𝑑)   𝐺(𝑥,𝑦,𝑧,𝑓,𝑑)   𝐻(𝑥,𝑦,𝑧,𝑓,𝑑)   𝑊(𝑥,𝑦,𝑧,𝑓,𝑑)   𝑌(𝑥,𝑦,𝑧,𝑓,𝑑)   𝑍(𝑥,𝑦,𝑧,𝑓,𝑑)   𝜏′(𝑥,𝑦,𝑧,𝑓,𝑑)

Proof of Theorem bnj1442
StepHypRef Expression
1 bnj1442.18 . . 3 (𝜂 ↔ (𝜃𝑧 ∈ {𝑥}))
2 bnj1442.17 . . . 4 (𝜃 ↔ (𝜒𝑧𝐸))
3 bnj1442.16 . . . . . 6 (𝜒𝑄 Fn ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))
43fnfund 6561 . . . . 5 (𝜒 → Fun 𝑄)
5 opex 5388 . . . . . . . 8 𝑥, (𝐺𝑍)⟩ ∈ V
65snid 4601 . . . . . . 7 𝑥, (𝐺𝑍)⟩ ∈ {⟨𝑥, (𝐺𝑍)⟩}
7 elun2 4117 . . . . . . 7 (⟨𝑥, (𝐺𝑍)⟩ ∈ {⟨𝑥, (𝐺𝑍)⟩} → ⟨𝑥, (𝐺𝑍)⟩ ∈ (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩}))
86, 7ax-mp 5 . . . . . 6 𝑥, (𝐺𝑍)⟩ ∈ (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})
9 bnj1442.12 . . . . . 6 𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})
108, 9eleqtrri 2836 . . . . 5 𝑥, (𝐺𝑍)⟩ ∈ 𝑄
11 funopfv 6849 . . . . 5 (Fun 𝑄 → (⟨𝑥, (𝐺𝑍)⟩ ∈ 𝑄 → (𝑄𝑥) = (𝐺𝑍)))
124, 10, 11mpisyl 21 . . . 4 (𝜒 → (𝑄𝑥) = (𝐺𝑍))
132, 12bnj832 32779 . . 3 (𝜃 → (𝑄𝑥) = (𝐺𝑍))
141, 13bnj832 32779 . 2 (𝜂 → (𝑄𝑥) = (𝐺𝑍))
15 elsni 4582 . . . 4 (𝑧 ∈ {𝑥} → 𝑧 = 𝑥)
161, 15simplbiim 506 . . 3 (𝜂𝑧 = 𝑥)
1716fveq2d 6804 . 2 (𝜂 → (𝑄𝑧) = (𝑄𝑥))
18 bnj602 32936 . . . . . . . 8 (𝑧 = 𝑥 → pred(𝑧, 𝐴, 𝑅) = pred(𝑥, 𝐴, 𝑅))
1918reseq2d 5899 . . . . . . 7 (𝑧 = 𝑥 → (𝑄 ↾ pred(𝑧, 𝐴, 𝑅)) = (𝑄 ↾ pred(𝑥, 𝐴, 𝑅)))
2016, 19syl 17 . . . . . 6 (𝜂 → (𝑄 ↾ pred(𝑧, 𝐴, 𝑅)) = (𝑄 ↾ pred(𝑥, 𝐴, 𝑅)))
219bnj931 32791 . . . . . . . . . 10 𝑃𝑄
2221a1i 11 . . . . . . . . 9 (𝜒𝑃𝑄)
23 bnj1442.7 . . . . . . . . . . . 12 (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))
24 bnj1442.6 . . . . . . . . . . . . 13 (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))
2524simplbi 499 . . . . . . . . . . . 12 (𝜓𝑅 FrSe 𝐴)
2623, 25bnj835 32780 . . . . . . . . . . 11 (𝜒𝑅 FrSe 𝐴)
27 bnj1442.5 . . . . . . . . . . . 12 𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}
2827, 23bnj1212 32820 . . . . . . . . . . 11 (𝜒𝑥𝐴)
29 bnj906 32951 . . . . . . . . . . 11 ((𝑅 FrSe 𝐴𝑥𝐴) → pred(𝑥, 𝐴, 𝑅) ⊆ trCl(𝑥, 𝐴, 𝑅))
3026, 28, 29syl2anc 585 . . . . . . . . . 10 (𝜒 → pred(𝑥, 𝐴, 𝑅) ⊆ trCl(𝑥, 𝐴, 𝑅))
31 bnj1442.15 . . . . . . . . . . 11 (𝜒𝑃 Fn trCl(𝑥, 𝐴, 𝑅))
3231fndmd 6565 . . . . . . . . . 10 (𝜒 → dom 𝑃 = trCl(𝑥, 𝐴, 𝑅))
3330, 32sseqtrrd 3967 . . . . . . . . 9 (𝜒 → pred(𝑥, 𝐴, 𝑅) ⊆ dom 𝑃)
344, 22, 33bnj1503 32870 . . . . . . . 8 (𝜒 → (𝑄 ↾ pred(𝑥, 𝐴, 𝑅)) = (𝑃 ↾ pred(𝑥, 𝐴, 𝑅)))
352, 34bnj832 32779 . . . . . . 7 (𝜃 → (𝑄 ↾ pred(𝑥, 𝐴, 𝑅)) = (𝑃 ↾ pred(𝑥, 𝐴, 𝑅)))
361, 35bnj832 32779 . . . . . 6 (𝜂 → (𝑄 ↾ pred(𝑥, 𝐴, 𝑅)) = (𝑃 ↾ pred(𝑥, 𝐴, 𝑅)))
3720, 36eqtrd 2776 . . . . 5 (𝜂 → (𝑄 ↾ pred(𝑧, 𝐴, 𝑅)) = (𝑃 ↾ pred(𝑥, 𝐴, 𝑅)))
3816, 37opeq12d 4817 . . . 4 (𝜂 → ⟨𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))⟩ = ⟨𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩)
39 bnj1442.13 . . . 4 𝑊 = ⟨𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))⟩
40 bnj1442.11 . . . 4 𝑍 = ⟨𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩
4138, 39, 403eqtr4g 2801 . . 3 (𝜂𝑊 = 𝑍)
4241fveq2d 6804 . 2 (𝜂 → (𝐺𝑊) = (𝐺𝑍))
4314, 17, 423eqtr4d 2786 1 (𝜂 → (𝑄𝑧) = (𝐺𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  w3a 1087   = wceq 1539  wex 1779  wcel 2104  {cab 2713  wne 2941  wral 3062  wrex 3071  {crab 3284  [wsbc 3721  cun 3890  wss 3892  c0 4262  {csn 4565  cop 4571   cuni 4844   class class class wbr 5081  dom cdm 5596  cres 5598  Fun wfun 6448   Fn wfn 6449  cfv 6454   predc-bnj14 32708   FrSe w-bnj15 32712   trClc-bnj18 32714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7616  ax-reg 9391  ax-inf2 9439
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5496  df-eprel 5502  df-po 5510  df-so 5511  df-fr 5551  df-we 5553  df-xp 5602  df-rel 5603  df-cnv 5604  df-co 5605  df-dm 5606  df-rn 5607  df-res 5608  df-ima 5609  df-ord 6280  df-on 6281  df-lim 6282  df-suc 6283  df-iota 6406  df-fun 6456  df-fn 6457  df-f 6458  df-f1 6459  df-fo 6460  df-f1o 6461  df-fv 6462  df-om 7741  df-1o 8324  df-bnj17 32707  df-bnj14 32709  df-bnj13 32711  df-bnj15 32713  df-bnj18 32715
This theorem is referenced by:  bnj1423  33072
  Copyright terms: Public domain W3C validator