Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1442 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj60 33083. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1442.1 | ⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} |
bnj1442.2 | ⊢ 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩ |
bnj1442.3 | ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} |
bnj1442.4 | ⊢ (𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) |
bnj1442.5 | ⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓𝜏} |
bnj1442.6 | ⊢ (𝜓 ↔ (𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅)) |
bnj1442.7 | ⊢ (𝜒 ↔ (𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥)) |
bnj1442.8 | ⊢ (𝜏′ ↔ [𝑦 / 𝑥]𝜏) |
bnj1442.9 | ⊢ 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′} |
bnj1442.10 | ⊢ 𝑃 = ∪ 𝐻 |
bnj1442.11 | ⊢ 𝑍 = ⟨𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩ |
bnj1442.12 | ⊢ 𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺‘𝑍)⟩}) |
bnj1442.13 | ⊢ 𝑊 = ⟨𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))⟩ |
bnj1442.14 | ⊢ 𝐸 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)) |
bnj1442.15 | ⊢ (𝜒 → 𝑃 Fn trCl(𝑥, 𝐴, 𝑅)) |
bnj1442.16 | ⊢ (𝜒 → 𝑄 Fn ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) |
bnj1442.17 | ⊢ (𝜃 ↔ (𝜒 ∧ 𝑧 ∈ 𝐸)) |
bnj1442.18 | ⊢ (𝜂 ↔ (𝜃 ∧ 𝑧 ∈ {𝑥})) |
Ref | Expression |
---|---|
bnj1442 | ⊢ (𝜂 → (𝑄‘𝑧) = (𝐺‘𝑊)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1442.18 | . . 3 ⊢ (𝜂 ↔ (𝜃 ∧ 𝑧 ∈ {𝑥})) | |
2 | bnj1442.17 | . . . 4 ⊢ (𝜃 ↔ (𝜒 ∧ 𝑧 ∈ 𝐸)) | |
3 | bnj1442.16 | . . . . . 6 ⊢ (𝜒 → 𝑄 Fn ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) | |
4 | 3 | fnfund 6561 | . . . . 5 ⊢ (𝜒 → Fun 𝑄) |
5 | opex 5388 | . . . . . . . 8 ⊢ ⟨𝑥, (𝐺‘𝑍)⟩ ∈ V | |
6 | 5 | snid 4601 | . . . . . . 7 ⊢ ⟨𝑥, (𝐺‘𝑍)⟩ ∈ {⟨𝑥, (𝐺‘𝑍)⟩} |
7 | elun2 4117 | . . . . . . 7 ⊢ (⟨𝑥, (𝐺‘𝑍)⟩ ∈ {⟨𝑥, (𝐺‘𝑍)⟩} → ⟨𝑥, (𝐺‘𝑍)⟩ ∈ (𝑃 ∪ {⟨𝑥, (𝐺‘𝑍)⟩})) | |
8 | 6, 7 | ax-mp 5 | . . . . . 6 ⊢ ⟨𝑥, (𝐺‘𝑍)⟩ ∈ (𝑃 ∪ {⟨𝑥, (𝐺‘𝑍)⟩}) |
9 | bnj1442.12 | . . . . . 6 ⊢ 𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺‘𝑍)⟩}) | |
10 | 8, 9 | eleqtrri 2836 | . . . . 5 ⊢ ⟨𝑥, (𝐺‘𝑍)⟩ ∈ 𝑄 |
11 | funopfv 6849 | . . . . 5 ⊢ (Fun 𝑄 → (⟨𝑥, (𝐺‘𝑍)⟩ ∈ 𝑄 → (𝑄‘𝑥) = (𝐺‘𝑍))) | |
12 | 4, 10, 11 | mpisyl 21 | . . . 4 ⊢ (𝜒 → (𝑄‘𝑥) = (𝐺‘𝑍)) |
13 | 2, 12 | bnj832 32779 | . . 3 ⊢ (𝜃 → (𝑄‘𝑥) = (𝐺‘𝑍)) |
14 | 1, 13 | bnj832 32779 | . 2 ⊢ (𝜂 → (𝑄‘𝑥) = (𝐺‘𝑍)) |
15 | elsni 4582 | . . . 4 ⊢ (𝑧 ∈ {𝑥} → 𝑧 = 𝑥) | |
16 | 1, 15 | simplbiim 506 | . . 3 ⊢ (𝜂 → 𝑧 = 𝑥) |
17 | 16 | fveq2d 6804 | . 2 ⊢ (𝜂 → (𝑄‘𝑧) = (𝑄‘𝑥)) |
18 | bnj602 32936 | . . . . . . . 8 ⊢ (𝑧 = 𝑥 → pred(𝑧, 𝐴, 𝑅) = pred(𝑥, 𝐴, 𝑅)) | |
19 | 18 | reseq2d 5899 | . . . . . . 7 ⊢ (𝑧 = 𝑥 → (𝑄 ↾ pred(𝑧, 𝐴, 𝑅)) = (𝑄 ↾ pred(𝑥, 𝐴, 𝑅))) |
20 | 16, 19 | syl 17 | . . . . . 6 ⊢ (𝜂 → (𝑄 ↾ pred(𝑧, 𝐴, 𝑅)) = (𝑄 ↾ pred(𝑥, 𝐴, 𝑅))) |
21 | 9 | bnj931 32791 | . . . . . . . . . 10 ⊢ 𝑃 ⊆ 𝑄 |
22 | 21 | a1i 11 | . . . . . . . . 9 ⊢ (𝜒 → 𝑃 ⊆ 𝑄) |
23 | bnj1442.7 | . . . . . . . . . . . 12 ⊢ (𝜒 ↔ (𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥)) | |
24 | bnj1442.6 | . . . . . . . . . . . . 13 ⊢ (𝜓 ↔ (𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅)) | |
25 | 24 | simplbi 499 | . . . . . . . . . . . 12 ⊢ (𝜓 → 𝑅 FrSe 𝐴) |
26 | 23, 25 | bnj835 32780 | . . . . . . . . . . 11 ⊢ (𝜒 → 𝑅 FrSe 𝐴) |
27 | bnj1442.5 | . . . . . . . . . . . 12 ⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓𝜏} | |
28 | 27, 23 | bnj1212 32820 | . . . . . . . . . . 11 ⊢ (𝜒 → 𝑥 ∈ 𝐴) |
29 | bnj906 32951 | . . . . . . . . . . 11 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → pred(𝑥, 𝐴, 𝑅) ⊆ trCl(𝑥, 𝐴, 𝑅)) | |
30 | 26, 28, 29 | syl2anc 585 | . . . . . . . . . 10 ⊢ (𝜒 → pred(𝑥, 𝐴, 𝑅) ⊆ trCl(𝑥, 𝐴, 𝑅)) |
31 | bnj1442.15 | . . . . . . . . . . 11 ⊢ (𝜒 → 𝑃 Fn trCl(𝑥, 𝐴, 𝑅)) | |
32 | 31 | fndmd 6565 | . . . . . . . . . 10 ⊢ (𝜒 → dom 𝑃 = trCl(𝑥, 𝐴, 𝑅)) |
33 | 30, 32 | sseqtrrd 3967 | . . . . . . . . 9 ⊢ (𝜒 → pred(𝑥, 𝐴, 𝑅) ⊆ dom 𝑃) |
34 | 4, 22, 33 | bnj1503 32870 | . . . . . . . 8 ⊢ (𝜒 → (𝑄 ↾ pred(𝑥, 𝐴, 𝑅)) = (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))) |
35 | 2, 34 | bnj832 32779 | . . . . . . 7 ⊢ (𝜃 → (𝑄 ↾ pred(𝑥, 𝐴, 𝑅)) = (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))) |
36 | 1, 35 | bnj832 32779 | . . . . . 6 ⊢ (𝜂 → (𝑄 ↾ pred(𝑥, 𝐴, 𝑅)) = (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))) |
37 | 20, 36 | eqtrd 2776 | . . . . 5 ⊢ (𝜂 → (𝑄 ↾ pred(𝑧, 𝐴, 𝑅)) = (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))) |
38 | 16, 37 | opeq12d 4817 | . . . 4 ⊢ (𝜂 → ⟨𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))⟩ = ⟨𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩) |
39 | bnj1442.13 | . . . 4 ⊢ 𝑊 = ⟨𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))⟩ | |
40 | bnj1442.11 | . . . 4 ⊢ 𝑍 = ⟨𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩ | |
41 | 38, 39, 40 | 3eqtr4g 2801 | . . 3 ⊢ (𝜂 → 𝑊 = 𝑍) |
42 | 41 | fveq2d 6804 | . 2 ⊢ (𝜂 → (𝐺‘𝑊) = (𝐺‘𝑍)) |
43 | 14, 17, 42 | 3eqtr4d 2786 | 1 ⊢ (𝜂 → (𝑄‘𝑧) = (𝐺‘𝑊)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1087 = wceq 1539 ∃wex 1779 ∈ wcel 2104 {cab 2713 ≠ wne 2941 ∀wral 3062 ∃wrex 3071 {crab 3284 [wsbc 3721 ∪ cun 3890 ⊆ wss 3892 ∅c0 4262 {csn 4565 ⟨cop 4571 ∪ cuni 4844 class class class wbr 5081 dom cdm 5596 ↾ cres 5598 Fun wfun 6448 Fn wfn 6449 ‘cfv 6454 predc-bnj14 32708 FrSe w-bnj15 32712 trClc-bnj18 32714 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7616 ax-reg 9391 ax-inf2 9439 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5496 df-eprel 5502 df-po 5510 df-so 5511 df-fr 5551 df-we 5553 df-xp 5602 df-rel 5603 df-cnv 5604 df-co 5605 df-dm 5606 df-rn 5607 df-res 5608 df-ima 5609 df-ord 6280 df-on 6281 df-lim 6282 df-suc 6283 df-iota 6406 df-fun 6456 df-fn 6457 df-f 6458 df-f1 6459 df-fo 6460 df-f1o 6461 df-fv 6462 df-om 7741 df-1o 8324 df-bnj17 32707 df-bnj14 32709 df-bnj13 32711 df-bnj15 32713 df-bnj18 32715 |
This theorem is referenced by: bnj1423 33072 |
Copyright terms: Public domain | W3C validator |