| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1442 | Structured version Visualization version GIF version | ||
| Description: Technical lemma for bnj60 35074. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj1442.1 | ⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} |
| bnj1442.2 | ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
| bnj1442.3 | ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} |
| bnj1442.4 | ⊢ (𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) |
| bnj1442.5 | ⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓𝜏} |
| bnj1442.6 | ⊢ (𝜓 ↔ (𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅)) |
| bnj1442.7 | ⊢ (𝜒 ↔ (𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥)) |
| bnj1442.8 | ⊢ (𝜏′ ↔ [𝑦 / 𝑥]𝜏) |
| bnj1442.9 | ⊢ 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′} |
| bnj1442.10 | ⊢ 𝑃 = ∪ 𝐻 |
| bnj1442.11 | ⊢ 𝑍 = 〈𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
| bnj1442.12 | ⊢ 𝑄 = (𝑃 ∪ {〈𝑥, (𝐺‘𝑍)〉}) |
| bnj1442.13 | ⊢ 𝑊 = 〈𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))〉 |
| bnj1442.14 | ⊢ 𝐸 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)) |
| bnj1442.15 | ⊢ (𝜒 → 𝑃 Fn trCl(𝑥, 𝐴, 𝑅)) |
| bnj1442.16 | ⊢ (𝜒 → 𝑄 Fn ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) |
| bnj1442.17 | ⊢ (𝜃 ↔ (𝜒 ∧ 𝑧 ∈ 𝐸)) |
| bnj1442.18 | ⊢ (𝜂 ↔ (𝜃 ∧ 𝑧 ∈ {𝑥})) |
| Ref | Expression |
|---|---|
| bnj1442 | ⊢ (𝜂 → (𝑄‘𝑧) = (𝐺‘𝑊)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj1442.18 | . . 3 ⊢ (𝜂 ↔ (𝜃 ∧ 𝑧 ∈ {𝑥})) | |
| 2 | bnj1442.17 | . . . 4 ⊢ (𝜃 ↔ (𝜒 ∧ 𝑧 ∈ 𝐸)) | |
| 3 | bnj1442.16 | . . . . . 6 ⊢ (𝜒 → 𝑄 Fn ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) | |
| 4 | 3 | fnfund 6582 | . . . . 5 ⊢ (𝜒 → Fun 𝑄) |
| 5 | opex 5402 | . . . . . . . 8 ⊢ 〈𝑥, (𝐺‘𝑍)〉 ∈ V | |
| 6 | 5 | snid 4612 | . . . . . . 7 ⊢ 〈𝑥, (𝐺‘𝑍)〉 ∈ {〈𝑥, (𝐺‘𝑍)〉} |
| 7 | elun2 4130 | . . . . . . 7 ⊢ (〈𝑥, (𝐺‘𝑍)〉 ∈ {〈𝑥, (𝐺‘𝑍)〉} → 〈𝑥, (𝐺‘𝑍)〉 ∈ (𝑃 ∪ {〈𝑥, (𝐺‘𝑍)〉})) | |
| 8 | 6, 7 | ax-mp 5 | . . . . . 6 ⊢ 〈𝑥, (𝐺‘𝑍)〉 ∈ (𝑃 ∪ {〈𝑥, (𝐺‘𝑍)〉}) |
| 9 | bnj1442.12 | . . . . . 6 ⊢ 𝑄 = (𝑃 ∪ {〈𝑥, (𝐺‘𝑍)〉}) | |
| 10 | 8, 9 | eleqtrri 2830 | . . . . 5 ⊢ 〈𝑥, (𝐺‘𝑍)〉 ∈ 𝑄 |
| 11 | funopfv 6871 | . . . . 5 ⊢ (Fun 𝑄 → (〈𝑥, (𝐺‘𝑍)〉 ∈ 𝑄 → (𝑄‘𝑥) = (𝐺‘𝑍))) | |
| 12 | 4, 10, 11 | mpisyl 21 | . . . 4 ⊢ (𝜒 → (𝑄‘𝑥) = (𝐺‘𝑍)) |
| 13 | 2, 12 | bnj832 34770 | . . 3 ⊢ (𝜃 → (𝑄‘𝑥) = (𝐺‘𝑍)) |
| 14 | 1, 13 | bnj832 34770 | . 2 ⊢ (𝜂 → (𝑄‘𝑥) = (𝐺‘𝑍)) |
| 15 | elsni 4590 | . . . 4 ⊢ (𝑧 ∈ {𝑥} → 𝑧 = 𝑥) | |
| 16 | 1, 15 | simplbiim 504 | . . 3 ⊢ (𝜂 → 𝑧 = 𝑥) |
| 17 | 16 | fveq2d 6826 | . 2 ⊢ (𝜂 → (𝑄‘𝑧) = (𝑄‘𝑥)) |
| 18 | bnj602 34927 | . . . . . . . 8 ⊢ (𝑧 = 𝑥 → pred(𝑧, 𝐴, 𝑅) = pred(𝑥, 𝐴, 𝑅)) | |
| 19 | 18 | reseq2d 5927 | . . . . . . 7 ⊢ (𝑧 = 𝑥 → (𝑄 ↾ pred(𝑧, 𝐴, 𝑅)) = (𝑄 ↾ pred(𝑥, 𝐴, 𝑅))) |
| 20 | 16, 19 | syl 17 | . . . . . 6 ⊢ (𝜂 → (𝑄 ↾ pred(𝑧, 𝐴, 𝑅)) = (𝑄 ↾ pred(𝑥, 𝐴, 𝑅))) |
| 21 | 9 | bnj931 34782 | . . . . . . . . . 10 ⊢ 𝑃 ⊆ 𝑄 |
| 22 | 21 | a1i 11 | . . . . . . . . 9 ⊢ (𝜒 → 𝑃 ⊆ 𝑄) |
| 23 | bnj1442.7 | . . . . . . . . . . . 12 ⊢ (𝜒 ↔ (𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥)) | |
| 24 | bnj1442.6 | . . . . . . . . . . . . 13 ⊢ (𝜓 ↔ (𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅)) | |
| 25 | 24 | simplbi 497 | . . . . . . . . . . . 12 ⊢ (𝜓 → 𝑅 FrSe 𝐴) |
| 26 | 23, 25 | bnj835 34771 | . . . . . . . . . . 11 ⊢ (𝜒 → 𝑅 FrSe 𝐴) |
| 27 | bnj1442.5 | . . . . . . . . . . . 12 ⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓𝜏} | |
| 28 | 27, 23 | bnj1212 34811 | . . . . . . . . . . 11 ⊢ (𝜒 → 𝑥 ∈ 𝐴) |
| 29 | bnj906 34942 | . . . . . . . . . . 11 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → pred(𝑥, 𝐴, 𝑅) ⊆ trCl(𝑥, 𝐴, 𝑅)) | |
| 30 | 26, 28, 29 | syl2anc 584 | . . . . . . . . . 10 ⊢ (𝜒 → pred(𝑥, 𝐴, 𝑅) ⊆ trCl(𝑥, 𝐴, 𝑅)) |
| 31 | bnj1442.15 | . . . . . . . . . . 11 ⊢ (𝜒 → 𝑃 Fn trCl(𝑥, 𝐴, 𝑅)) | |
| 32 | 31 | fndmd 6586 | . . . . . . . . . 10 ⊢ (𝜒 → dom 𝑃 = trCl(𝑥, 𝐴, 𝑅)) |
| 33 | 30, 32 | sseqtrrd 3967 | . . . . . . . . 9 ⊢ (𝜒 → pred(𝑥, 𝐴, 𝑅) ⊆ dom 𝑃) |
| 34 | 4, 22, 33 | bnj1503 34861 | . . . . . . . 8 ⊢ (𝜒 → (𝑄 ↾ pred(𝑥, 𝐴, 𝑅)) = (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))) |
| 35 | 2, 34 | bnj832 34770 | . . . . . . 7 ⊢ (𝜃 → (𝑄 ↾ pred(𝑥, 𝐴, 𝑅)) = (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))) |
| 36 | 1, 35 | bnj832 34770 | . . . . . 6 ⊢ (𝜂 → (𝑄 ↾ pred(𝑥, 𝐴, 𝑅)) = (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))) |
| 37 | 20, 36 | eqtrd 2766 | . . . . 5 ⊢ (𝜂 → (𝑄 ↾ pred(𝑧, 𝐴, 𝑅)) = (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))) |
| 38 | 16, 37 | opeq12d 4830 | . . . 4 ⊢ (𝜂 → 〈𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))〉 = 〈𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))〉) |
| 39 | bnj1442.13 | . . . 4 ⊢ 𝑊 = 〈𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))〉 | |
| 40 | bnj1442.11 | . . . 4 ⊢ 𝑍 = 〈𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))〉 | |
| 41 | 38, 39, 40 | 3eqtr4g 2791 | . . 3 ⊢ (𝜂 → 𝑊 = 𝑍) |
| 42 | 41 | fveq2d 6826 | . 2 ⊢ (𝜂 → (𝐺‘𝑊) = (𝐺‘𝑍)) |
| 43 | 14, 17, 42 | 3eqtr4d 2776 | 1 ⊢ (𝜂 → (𝑄‘𝑧) = (𝐺‘𝑊)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∃wex 1780 ∈ wcel 2111 {cab 2709 ≠ wne 2928 ∀wral 3047 ∃wrex 3056 {crab 3395 [wsbc 3736 ∪ cun 3895 ⊆ wss 3897 ∅c0 4280 {csn 4573 〈cop 4579 ∪ cuni 4856 class class class wbr 5089 dom cdm 5614 ↾ cres 5616 Fun wfun 6475 Fn wfn 6476 ‘cfv 6481 predc-bnj14 34700 FrSe w-bnj15 34704 trClc-bnj18 34706 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-reg 9478 ax-inf2 9531 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-om 7797 df-1o 8385 df-bnj17 34699 df-bnj14 34701 df-bnj13 34703 df-bnj15 34705 df-bnj18 34707 |
| This theorem is referenced by: bnj1423 35063 |
| Copyright terms: Public domain | W3C validator |