Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1442 Structured version   Visualization version   GIF version

Theorem bnj1442 31497
Description: Technical lemma for bnj60 31510. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1442.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
bnj1442.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1442.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
bnj1442.4 (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
bnj1442.5 𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}
bnj1442.6 (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))
bnj1442.7 (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))
bnj1442.8 (𝜏′[𝑦 / 𝑥]𝜏)
bnj1442.9 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}
bnj1442.10 𝑃 = 𝐻
bnj1442.11 𝑍 = ⟨𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1442.12 𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})
bnj1442.13 𝑊 = ⟨𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))⟩
bnj1442.14 𝐸 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))
bnj1442.15 (𝜒𝑃 Fn trCl(𝑥, 𝐴, 𝑅))
bnj1442.16 (𝜒𝑄 Fn ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))
bnj1442.17 (𝜃 ↔ (𝜒𝑧𝐸))
bnj1442.18 (𝜂 ↔ (𝜃𝑧 ∈ {𝑥}))
Assertion
Ref Expression
bnj1442 (𝜂 → (𝑄𝑧) = (𝐺𝑊))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜓(𝑥,𝑦,𝑧,𝑓,𝑑)   𝜒(𝑥,𝑦,𝑧,𝑓,𝑑)   𝜃(𝑥,𝑦,𝑧,𝑓,𝑑)   𝜏(𝑥,𝑦,𝑧,𝑓,𝑑)   𝜂(𝑥,𝑦,𝑧,𝑓,𝑑)   𝐴(𝑦,𝑧,𝑓,𝑑)   𝐵(𝑥,𝑦,𝑧,𝑓,𝑑)   𝐶(𝑥,𝑦,𝑧,𝑓,𝑑)   𝐷(𝑥,𝑦,𝑧,𝑓,𝑑)   𝑃(𝑥,𝑦,𝑧,𝑓,𝑑)   𝑄(𝑥,𝑦,𝑧,𝑓,𝑑)   𝑅(𝑥,𝑦,𝑧,𝑓,𝑑)   𝐸(𝑥,𝑦,𝑧,𝑓,𝑑)   𝐺(𝑥,𝑦,𝑧,𝑓,𝑑)   𝐻(𝑥,𝑦,𝑧,𝑓,𝑑)   𝑊(𝑥,𝑦,𝑧,𝑓,𝑑)   𝑌(𝑥,𝑦,𝑧,𝑓,𝑑)   𝑍(𝑥,𝑦,𝑧,𝑓,𝑑)   𝜏′(𝑥,𝑦,𝑧,𝑓,𝑑)

Proof of Theorem bnj1442
StepHypRef Expression
1 bnj1442.18 . . 3 (𝜂 ↔ (𝜃𝑧 ∈ {𝑥}))
2 bnj1442.17 . . . 4 (𝜃 ↔ (𝜒𝑧𝐸))
3 bnj1442.16 . . . . . 6 (𝜒𝑄 Fn ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))
43bnj930 31220 . . . . 5 (𝜒 → Fun 𝑄)
5 opex 5088 . . . . . . . 8 𝑥, (𝐺𝑍)⟩ ∈ V
65snid 4366 . . . . . . 7 𝑥, (𝐺𝑍)⟩ ∈ {⟨𝑥, (𝐺𝑍)⟩}
7 elun2 3943 . . . . . . 7 (⟨𝑥, (𝐺𝑍)⟩ ∈ {⟨𝑥, (𝐺𝑍)⟩} → ⟨𝑥, (𝐺𝑍)⟩ ∈ (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩}))
86, 7ax-mp 5 . . . . . 6 𝑥, (𝐺𝑍)⟩ ∈ (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})
9 bnj1442.12 . . . . . 6 𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})
108, 9eleqtrri 2843 . . . . 5 𝑥, (𝐺𝑍)⟩ ∈ 𝑄
11 funopfv 6423 . . . . 5 (Fun 𝑄 → (⟨𝑥, (𝐺𝑍)⟩ ∈ 𝑄 → (𝑄𝑥) = (𝐺𝑍)))
124, 10, 11mpisyl 21 . . . 4 (𝜒 → (𝑄𝑥) = (𝐺𝑍))
132, 12bnj832 31208 . . 3 (𝜃 → (𝑄𝑥) = (𝐺𝑍))
141, 13bnj832 31208 . 2 (𝜂 → (𝑄𝑥) = (𝐺𝑍))
15 elsni 4351 . . . 4 (𝑧 ∈ {𝑥} → 𝑧 = 𝑥)
161, 15simplbiim 499 . . 3 (𝜂𝑧 = 𝑥)
1716fveq2d 6379 . 2 (𝜂 → (𝑄𝑧) = (𝑄𝑥))
18 bnj602 31365 . . . . . . . 8 (𝑧 = 𝑥 → pred(𝑧, 𝐴, 𝑅) = pred(𝑥, 𝐴, 𝑅))
1918reseq2d 5565 . . . . . . 7 (𝑧 = 𝑥 → (𝑄 ↾ pred(𝑧, 𝐴, 𝑅)) = (𝑄 ↾ pred(𝑥, 𝐴, 𝑅)))
2016, 19syl 17 . . . . . 6 (𝜂 → (𝑄 ↾ pred(𝑧, 𝐴, 𝑅)) = (𝑄 ↾ pred(𝑥, 𝐴, 𝑅)))
219bnj931 31221 . . . . . . . . . 10 𝑃𝑄
2221a1i 11 . . . . . . . . 9 (𝜒𝑃𝑄)
23 bnj1442.7 . . . . . . . . . . . 12 (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))
24 bnj1442.6 . . . . . . . . . . . . 13 (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))
2524simplbi 491 . . . . . . . . . . . 12 (𝜓𝑅 FrSe 𝐴)
2623, 25bnj835 31209 . . . . . . . . . . 11 (𝜒𝑅 FrSe 𝐴)
27 bnj1442.5 . . . . . . . . . . . 12 𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}
2827, 23bnj1212 31250 . . . . . . . . . . 11 (𝜒𝑥𝐴)
29 bnj906 31380 . . . . . . . . . . 11 ((𝑅 FrSe 𝐴𝑥𝐴) → pred(𝑥, 𝐴, 𝑅) ⊆ trCl(𝑥, 𝐴, 𝑅))
3026, 28, 29syl2anc 579 . . . . . . . . . 10 (𝜒 → pred(𝑥, 𝐴, 𝑅) ⊆ trCl(𝑥, 𝐴, 𝑅))
31 bnj1442.15 . . . . . . . . . . 11 (𝜒𝑃 Fn trCl(𝑥, 𝐴, 𝑅))
32 fndm 6168 . . . . . . . . . . 11 (𝑃 Fn trCl(𝑥, 𝐴, 𝑅) → dom 𝑃 = trCl(𝑥, 𝐴, 𝑅))
3331, 32syl 17 . . . . . . . . . 10 (𝜒 → dom 𝑃 = trCl(𝑥, 𝐴, 𝑅))
3430, 33sseqtr4d 3802 . . . . . . . . 9 (𝜒 → pred(𝑥, 𝐴, 𝑅) ⊆ dom 𝑃)
354, 22, 34bnj1503 31299 . . . . . . . 8 (𝜒 → (𝑄 ↾ pred(𝑥, 𝐴, 𝑅)) = (𝑃 ↾ pred(𝑥, 𝐴, 𝑅)))
362, 35bnj832 31208 . . . . . . 7 (𝜃 → (𝑄 ↾ pred(𝑥, 𝐴, 𝑅)) = (𝑃 ↾ pred(𝑥, 𝐴, 𝑅)))
371, 36bnj832 31208 . . . . . 6 (𝜂 → (𝑄 ↾ pred(𝑥, 𝐴, 𝑅)) = (𝑃 ↾ pred(𝑥, 𝐴, 𝑅)))
3820, 37eqtrd 2799 . . . . 5 (𝜂 → (𝑄 ↾ pred(𝑧, 𝐴, 𝑅)) = (𝑃 ↾ pred(𝑥, 𝐴, 𝑅)))
3916, 38opeq12d 4567 . . . 4 (𝜂 → ⟨𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))⟩ = ⟨𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩)
40 bnj1442.13 . . . 4 𝑊 = ⟨𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))⟩
41 bnj1442.11 . . . 4 𝑍 = ⟨𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩
4239, 40, 413eqtr4g 2824 . . 3 (𝜂𝑊 = 𝑍)
4342fveq2d 6379 . 2 (𝜂 → (𝐺𝑊) = (𝐺𝑍))
4414, 17, 433eqtr4d 2809 1 (𝜂 → (𝑄𝑧) = (𝐺𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wex 1874  wcel 2155  {cab 2751  wne 2937  wral 3055  wrex 3056  {crab 3059  [wsbc 3596  cun 3730  wss 3732  c0 4079  {csn 4334  cop 4340   cuni 4594   class class class wbr 4809  dom cdm 5277  cres 5279  Fun wfun 6062   Fn wfn 6063  cfv 6068   predc-bnj14 31137   FrSe w-bnj15 31141   trClc-bnj18 31143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-reg 8704  ax-inf2 8753
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-reu 3062  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-om 7264  df-1o 7764  df-bnj17 31136  df-bnj14 31138  df-bnj13 31140  df-bnj15 31142  df-bnj18 31144
This theorem is referenced by:  bnj1423  31499
  Copyright terms: Public domain W3C validator