Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1442 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj60 32942. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1442.1 | ⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} |
bnj1442.2 | ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
bnj1442.3 | ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} |
bnj1442.4 | ⊢ (𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) |
bnj1442.5 | ⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓𝜏} |
bnj1442.6 | ⊢ (𝜓 ↔ (𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅)) |
bnj1442.7 | ⊢ (𝜒 ↔ (𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥)) |
bnj1442.8 | ⊢ (𝜏′ ↔ [𝑦 / 𝑥]𝜏) |
bnj1442.9 | ⊢ 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′} |
bnj1442.10 | ⊢ 𝑃 = ∪ 𝐻 |
bnj1442.11 | ⊢ 𝑍 = 〈𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
bnj1442.12 | ⊢ 𝑄 = (𝑃 ∪ {〈𝑥, (𝐺‘𝑍)〉}) |
bnj1442.13 | ⊢ 𝑊 = 〈𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))〉 |
bnj1442.14 | ⊢ 𝐸 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)) |
bnj1442.15 | ⊢ (𝜒 → 𝑃 Fn trCl(𝑥, 𝐴, 𝑅)) |
bnj1442.16 | ⊢ (𝜒 → 𝑄 Fn ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) |
bnj1442.17 | ⊢ (𝜃 ↔ (𝜒 ∧ 𝑧 ∈ 𝐸)) |
bnj1442.18 | ⊢ (𝜂 ↔ (𝜃 ∧ 𝑧 ∈ {𝑥})) |
Ref | Expression |
---|---|
bnj1442 | ⊢ (𝜂 → (𝑄‘𝑧) = (𝐺‘𝑊)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1442.18 | . . 3 ⊢ (𝜂 ↔ (𝜃 ∧ 𝑧 ∈ {𝑥})) | |
2 | bnj1442.17 | . . . 4 ⊢ (𝜃 ↔ (𝜒 ∧ 𝑧 ∈ 𝐸)) | |
3 | bnj1442.16 | . . . . . 6 ⊢ (𝜒 → 𝑄 Fn ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) | |
4 | 3 | fnfund 6518 | . . . . 5 ⊢ (𝜒 → Fun 𝑄) |
5 | opex 5373 | . . . . . . . 8 ⊢ 〈𝑥, (𝐺‘𝑍)〉 ∈ V | |
6 | 5 | snid 4594 | . . . . . . 7 ⊢ 〈𝑥, (𝐺‘𝑍)〉 ∈ {〈𝑥, (𝐺‘𝑍)〉} |
7 | elun2 4107 | . . . . . . 7 ⊢ (〈𝑥, (𝐺‘𝑍)〉 ∈ {〈𝑥, (𝐺‘𝑍)〉} → 〈𝑥, (𝐺‘𝑍)〉 ∈ (𝑃 ∪ {〈𝑥, (𝐺‘𝑍)〉})) | |
8 | 6, 7 | ax-mp 5 | . . . . . 6 ⊢ 〈𝑥, (𝐺‘𝑍)〉 ∈ (𝑃 ∪ {〈𝑥, (𝐺‘𝑍)〉}) |
9 | bnj1442.12 | . . . . . 6 ⊢ 𝑄 = (𝑃 ∪ {〈𝑥, (𝐺‘𝑍)〉}) | |
10 | 8, 9 | eleqtrri 2838 | . . . . 5 ⊢ 〈𝑥, (𝐺‘𝑍)〉 ∈ 𝑄 |
11 | funopfv 6803 | . . . . 5 ⊢ (Fun 𝑄 → (〈𝑥, (𝐺‘𝑍)〉 ∈ 𝑄 → (𝑄‘𝑥) = (𝐺‘𝑍))) | |
12 | 4, 10, 11 | mpisyl 21 | . . . 4 ⊢ (𝜒 → (𝑄‘𝑥) = (𝐺‘𝑍)) |
13 | 2, 12 | bnj832 32638 | . . 3 ⊢ (𝜃 → (𝑄‘𝑥) = (𝐺‘𝑍)) |
14 | 1, 13 | bnj832 32638 | . 2 ⊢ (𝜂 → (𝑄‘𝑥) = (𝐺‘𝑍)) |
15 | elsni 4575 | . . . 4 ⊢ (𝑧 ∈ {𝑥} → 𝑧 = 𝑥) | |
16 | 1, 15 | simplbiim 504 | . . 3 ⊢ (𝜂 → 𝑧 = 𝑥) |
17 | 16 | fveq2d 6760 | . 2 ⊢ (𝜂 → (𝑄‘𝑧) = (𝑄‘𝑥)) |
18 | bnj602 32795 | . . . . . . . 8 ⊢ (𝑧 = 𝑥 → pred(𝑧, 𝐴, 𝑅) = pred(𝑥, 𝐴, 𝑅)) | |
19 | 18 | reseq2d 5880 | . . . . . . 7 ⊢ (𝑧 = 𝑥 → (𝑄 ↾ pred(𝑧, 𝐴, 𝑅)) = (𝑄 ↾ pred(𝑥, 𝐴, 𝑅))) |
20 | 16, 19 | syl 17 | . . . . . 6 ⊢ (𝜂 → (𝑄 ↾ pred(𝑧, 𝐴, 𝑅)) = (𝑄 ↾ pred(𝑥, 𝐴, 𝑅))) |
21 | 9 | bnj931 32650 | . . . . . . . . . 10 ⊢ 𝑃 ⊆ 𝑄 |
22 | 21 | a1i 11 | . . . . . . . . 9 ⊢ (𝜒 → 𝑃 ⊆ 𝑄) |
23 | bnj1442.7 | . . . . . . . . . . . 12 ⊢ (𝜒 ↔ (𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥)) | |
24 | bnj1442.6 | . . . . . . . . . . . . 13 ⊢ (𝜓 ↔ (𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅)) | |
25 | 24 | simplbi 497 | . . . . . . . . . . . 12 ⊢ (𝜓 → 𝑅 FrSe 𝐴) |
26 | 23, 25 | bnj835 32639 | . . . . . . . . . . 11 ⊢ (𝜒 → 𝑅 FrSe 𝐴) |
27 | bnj1442.5 | . . . . . . . . . . . 12 ⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓𝜏} | |
28 | 27, 23 | bnj1212 32679 | . . . . . . . . . . 11 ⊢ (𝜒 → 𝑥 ∈ 𝐴) |
29 | bnj906 32810 | . . . . . . . . . . 11 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → pred(𝑥, 𝐴, 𝑅) ⊆ trCl(𝑥, 𝐴, 𝑅)) | |
30 | 26, 28, 29 | syl2anc 583 | . . . . . . . . . 10 ⊢ (𝜒 → pred(𝑥, 𝐴, 𝑅) ⊆ trCl(𝑥, 𝐴, 𝑅)) |
31 | bnj1442.15 | . . . . . . . . . . 11 ⊢ (𝜒 → 𝑃 Fn trCl(𝑥, 𝐴, 𝑅)) | |
32 | 31 | fndmd 6522 | . . . . . . . . . 10 ⊢ (𝜒 → dom 𝑃 = trCl(𝑥, 𝐴, 𝑅)) |
33 | 30, 32 | sseqtrrd 3958 | . . . . . . . . 9 ⊢ (𝜒 → pred(𝑥, 𝐴, 𝑅) ⊆ dom 𝑃) |
34 | 4, 22, 33 | bnj1503 32729 | . . . . . . . 8 ⊢ (𝜒 → (𝑄 ↾ pred(𝑥, 𝐴, 𝑅)) = (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))) |
35 | 2, 34 | bnj832 32638 | . . . . . . 7 ⊢ (𝜃 → (𝑄 ↾ pred(𝑥, 𝐴, 𝑅)) = (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))) |
36 | 1, 35 | bnj832 32638 | . . . . . 6 ⊢ (𝜂 → (𝑄 ↾ pred(𝑥, 𝐴, 𝑅)) = (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))) |
37 | 20, 36 | eqtrd 2778 | . . . . 5 ⊢ (𝜂 → (𝑄 ↾ pred(𝑧, 𝐴, 𝑅)) = (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))) |
38 | 16, 37 | opeq12d 4809 | . . . 4 ⊢ (𝜂 → 〈𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))〉 = 〈𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))〉) |
39 | bnj1442.13 | . . . 4 ⊢ 𝑊 = 〈𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))〉 | |
40 | bnj1442.11 | . . . 4 ⊢ 𝑍 = 〈𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))〉 | |
41 | 38, 39, 40 | 3eqtr4g 2804 | . . 3 ⊢ (𝜂 → 𝑊 = 𝑍) |
42 | 41 | fveq2d 6760 | . 2 ⊢ (𝜂 → (𝐺‘𝑊) = (𝐺‘𝑍)) |
43 | 14, 17, 42 | 3eqtr4d 2788 | 1 ⊢ (𝜂 → (𝑄‘𝑧) = (𝐺‘𝑊)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∃wex 1783 ∈ wcel 2108 {cab 2715 ≠ wne 2942 ∀wral 3063 ∃wrex 3064 {crab 3067 [wsbc 3711 ∪ cun 3881 ⊆ wss 3883 ∅c0 4253 {csn 4558 〈cop 4564 ∪ cuni 4836 class class class wbr 5070 dom cdm 5580 ↾ cres 5582 Fun wfun 6412 Fn wfn 6413 ‘cfv 6418 predc-bnj14 32567 FrSe w-bnj15 32571 trClc-bnj18 32573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-reg 9281 ax-inf2 9329 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-om 7688 df-1o 8267 df-bnj17 32566 df-bnj14 32568 df-bnj13 32570 df-bnj15 32572 df-bnj18 32574 |
This theorem is referenced by: bnj1423 32931 |
Copyright terms: Public domain | W3C validator |