Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1442 Structured version   Visualization version   GIF version

Theorem bnj1442 32696
Description: Technical lemma for bnj60 32709. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1442.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
bnj1442.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1442.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
bnj1442.4 (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
bnj1442.5 𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}
bnj1442.6 (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))
bnj1442.7 (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))
bnj1442.8 (𝜏′[𝑦 / 𝑥]𝜏)
bnj1442.9 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}
bnj1442.10 𝑃 = 𝐻
bnj1442.11 𝑍 = ⟨𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1442.12 𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})
bnj1442.13 𝑊 = ⟨𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))⟩
bnj1442.14 𝐸 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))
bnj1442.15 (𝜒𝑃 Fn trCl(𝑥, 𝐴, 𝑅))
bnj1442.16 (𝜒𝑄 Fn ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))
bnj1442.17 (𝜃 ↔ (𝜒𝑧𝐸))
bnj1442.18 (𝜂 ↔ (𝜃𝑧 ∈ {𝑥}))
Assertion
Ref Expression
bnj1442 (𝜂 → (𝑄𝑧) = (𝐺𝑊))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜓(𝑥,𝑦,𝑧,𝑓,𝑑)   𝜒(𝑥,𝑦,𝑧,𝑓,𝑑)   𝜃(𝑥,𝑦,𝑧,𝑓,𝑑)   𝜏(𝑥,𝑦,𝑧,𝑓,𝑑)   𝜂(𝑥,𝑦,𝑧,𝑓,𝑑)   𝐴(𝑦,𝑧,𝑓,𝑑)   𝐵(𝑥,𝑦,𝑧,𝑓,𝑑)   𝐶(𝑥,𝑦,𝑧,𝑓,𝑑)   𝐷(𝑥,𝑦,𝑧,𝑓,𝑑)   𝑃(𝑥,𝑦,𝑧,𝑓,𝑑)   𝑄(𝑥,𝑦,𝑧,𝑓,𝑑)   𝑅(𝑥,𝑦,𝑧,𝑓,𝑑)   𝐸(𝑥,𝑦,𝑧,𝑓,𝑑)   𝐺(𝑥,𝑦,𝑧,𝑓,𝑑)   𝐻(𝑥,𝑦,𝑧,𝑓,𝑑)   𝑊(𝑥,𝑦,𝑧,𝑓,𝑑)   𝑌(𝑥,𝑦,𝑧,𝑓,𝑑)   𝑍(𝑥,𝑦,𝑧,𝑓,𝑑)   𝜏′(𝑥,𝑦,𝑧,𝑓,𝑑)

Proof of Theorem bnj1442
StepHypRef Expression
1 bnj1442.18 . . 3 (𝜂 ↔ (𝜃𝑧 ∈ {𝑥}))
2 bnj1442.17 . . . 4 (𝜃 ↔ (𝜒𝑧𝐸))
3 bnj1442.16 . . . . . 6 (𝜒𝑄 Fn ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))
43bnj930 32416 . . . . 5 (𝜒 → Fun 𝑄)
5 opex 5333 . . . . . . . 8 𝑥, (𝐺𝑍)⟩ ∈ V
65snid 4563 . . . . . . 7 𝑥, (𝐺𝑍)⟩ ∈ {⟨𝑥, (𝐺𝑍)⟩}
7 elun2 4077 . . . . . . 7 (⟨𝑥, (𝐺𝑍)⟩ ∈ {⟨𝑥, (𝐺𝑍)⟩} → ⟨𝑥, (𝐺𝑍)⟩ ∈ (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩}))
86, 7ax-mp 5 . . . . . 6 𝑥, (𝐺𝑍)⟩ ∈ (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})
9 bnj1442.12 . . . . . 6 𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})
108, 9eleqtrri 2830 . . . . 5 𝑥, (𝐺𝑍)⟩ ∈ 𝑄
11 funopfv 6742 . . . . 5 (Fun 𝑄 → (⟨𝑥, (𝐺𝑍)⟩ ∈ 𝑄 → (𝑄𝑥) = (𝐺𝑍)))
124, 10, 11mpisyl 21 . . . 4 (𝜒 → (𝑄𝑥) = (𝐺𝑍))
132, 12bnj832 32404 . . 3 (𝜃 → (𝑄𝑥) = (𝐺𝑍))
141, 13bnj832 32404 . 2 (𝜂 → (𝑄𝑥) = (𝐺𝑍))
15 elsni 4544 . . . 4 (𝑧 ∈ {𝑥} → 𝑧 = 𝑥)
161, 15simplbiim 508 . . 3 (𝜂𝑧 = 𝑥)
1716fveq2d 6699 . 2 (𝜂 → (𝑄𝑧) = (𝑄𝑥))
18 bnj602 32562 . . . . . . . 8 (𝑧 = 𝑥 → pred(𝑧, 𝐴, 𝑅) = pred(𝑥, 𝐴, 𝑅))
1918reseq2d 5836 . . . . . . 7 (𝑧 = 𝑥 → (𝑄 ↾ pred(𝑧, 𝐴, 𝑅)) = (𝑄 ↾ pred(𝑥, 𝐴, 𝑅)))
2016, 19syl 17 . . . . . 6 (𝜂 → (𝑄 ↾ pred(𝑧, 𝐴, 𝑅)) = (𝑄 ↾ pred(𝑥, 𝐴, 𝑅)))
219bnj931 32417 . . . . . . . . . 10 𝑃𝑄
2221a1i 11 . . . . . . . . 9 (𝜒𝑃𝑄)
23 bnj1442.7 . . . . . . . . . . . 12 (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))
24 bnj1442.6 . . . . . . . . . . . . 13 (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))
2524simplbi 501 . . . . . . . . . . . 12 (𝜓𝑅 FrSe 𝐴)
2623, 25bnj835 32405 . . . . . . . . . . 11 (𝜒𝑅 FrSe 𝐴)
27 bnj1442.5 . . . . . . . . . . . 12 𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}
2827, 23bnj1212 32446 . . . . . . . . . . 11 (𝜒𝑥𝐴)
29 bnj906 32577 . . . . . . . . . . 11 ((𝑅 FrSe 𝐴𝑥𝐴) → pred(𝑥, 𝐴, 𝑅) ⊆ trCl(𝑥, 𝐴, 𝑅))
3026, 28, 29syl2anc 587 . . . . . . . . . 10 (𝜒 → pred(𝑥, 𝐴, 𝑅) ⊆ trCl(𝑥, 𝐴, 𝑅))
31 bnj1442.15 . . . . . . . . . . 11 (𝜒𝑃 Fn trCl(𝑥, 𝐴, 𝑅))
3231fndmd 6461 . . . . . . . . . 10 (𝜒 → dom 𝑃 = trCl(𝑥, 𝐴, 𝑅))
3330, 32sseqtrrd 3928 . . . . . . . . 9 (𝜒 → pred(𝑥, 𝐴, 𝑅) ⊆ dom 𝑃)
344, 22, 33bnj1503 32496 . . . . . . . 8 (𝜒 → (𝑄 ↾ pred(𝑥, 𝐴, 𝑅)) = (𝑃 ↾ pred(𝑥, 𝐴, 𝑅)))
352, 34bnj832 32404 . . . . . . 7 (𝜃 → (𝑄 ↾ pred(𝑥, 𝐴, 𝑅)) = (𝑃 ↾ pred(𝑥, 𝐴, 𝑅)))
361, 35bnj832 32404 . . . . . 6 (𝜂 → (𝑄 ↾ pred(𝑥, 𝐴, 𝑅)) = (𝑃 ↾ pred(𝑥, 𝐴, 𝑅)))
3720, 36eqtrd 2771 . . . . 5 (𝜂 → (𝑄 ↾ pred(𝑧, 𝐴, 𝑅)) = (𝑃 ↾ pred(𝑥, 𝐴, 𝑅)))
3816, 37opeq12d 4778 . . . 4 (𝜂 → ⟨𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))⟩ = ⟨𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩)
39 bnj1442.13 . . . 4 𝑊 = ⟨𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))⟩
40 bnj1442.11 . . . 4 𝑍 = ⟨𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩
4138, 39, 403eqtr4g 2796 . . 3 (𝜂𝑊 = 𝑍)
4241fveq2d 6699 . 2 (𝜂 → (𝐺𝑊) = (𝐺𝑍))
4314, 17, 423eqtr4d 2781 1 (𝜂 → (𝑄𝑧) = (𝐺𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wex 1787  wcel 2112  {cab 2714  wne 2932  wral 3051  wrex 3052  {crab 3055  [wsbc 3683  cun 3851  wss 3853  c0 4223  {csn 4527  cop 4533   cuni 4805   class class class wbr 5039  dom cdm 5536  cres 5538  Fun wfun 6352   Fn wfn 6353  cfv 6358   predc-bnj14 32333   FrSe w-bnj15 32337   trClc-bnj18 32339
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-reg 9186  ax-inf2 9234
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-om 7623  df-1o 8180  df-bnj17 32332  df-bnj14 32334  df-bnj13 32336  df-bnj15 32338  df-bnj18 32340
This theorem is referenced by:  bnj1423  32698
  Copyright terms: Public domain W3C validator