Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1442 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj60 33341. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1442.1 | ⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} |
bnj1442.2 | ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
bnj1442.3 | ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} |
bnj1442.4 | ⊢ (𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) |
bnj1442.5 | ⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓𝜏} |
bnj1442.6 | ⊢ (𝜓 ↔ (𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅)) |
bnj1442.7 | ⊢ (𝜒 ↔ (𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥)) |
bnj1442.8 | ⊢ (𝜏′ ↔ [𝑦 / 𝑥]𝜏) |
bnj1442.9 | ⊢ 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′} |
bnj1442.10 | ⊢ 𝑃 = ∪ 𝐻 |
bnj1442.11 | ⊢ 𝑍 = 〈𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
bnj1442.12 | ⊢ 𝑄 = (𝑃 ∪ {〈𝑥, (𝐺‘𝑍)〉}) |
bnj1442.13 | ⊢ 𝑊 = 〈𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))〉 |
bnj1442.14 | ⊢ 𝐸 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)) |
bnj1442.15 | ⊢ (𝜒 → 𝑃 Fn trCl(𝑥, 𝐴, 𝑅)) |
bnj1442.16 | ⊢ (𝜒 → 𝑄 Fn ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) |
bnj1442.17 | ⊢ (𝜃 ↔ (𝜒 ∧ 𝑧 ∈ 𝐸)) |
bnj1442.18 | ⊢ (𝜂 ↔ (𝜃 ∧ 𝑧 ∈ {𝑥})) |
Ref | Expression |
---|---|
bnj1442 | ⊢ (𝜂 → (𝑄‘𝑧) = (𝐺‘𝑊)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1442.18 | . . 3 ⊢ (𝜂 ↔ (𝜃 ∧ 𝑧 ∈ {𝑥})) | |
2 | bnj1442.17 | . . . 4 ⊢ (𝜃 ↔ (𝜒 ∧ 𝑧 ∈ 𝐸)) | |
3 | bnj1442.16 | . . . . . 6 ⊢ (𝜒 → 𝑄 Fn ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) | |
4 | 3 | fnfund 6586 | . . . . 5 ⊢ (𝜒 → Fun 𝑄) |
5 | opex 5409 | . . . . . . . 8 ⊢ 〈𝑥, (𝐺‘𝑍)〉 ∈ V | |
6 | 5 | snid 4609 | . . . . . . 7 ⊢ 〈𝑥, (𝐺‘𝑍)〉 ∈ {〈𝑥, (𝐺‘𝑍)〉} |
7 | elun2 4124 | . . . . . . 7 ⊢ (〈𝑥, (𝐺‘𝑍)〉 ∈ {〈𝑥, (𝐺‘𝑍)〉} → 〈𝑥, (𝐺‘𝑍)〉 ∈ (𝑃 ∪ {〈𝑥, (𝐺‘𝑍)〉})) | |
8 | 6, 7 | ax-mp 5 | . . . . . 6 ⊢ 〈𝑥, (𝐺‘𝑍)〉 ∈ (𝑃 ∪ {〈𝑥, (𝐺‘𝑍)〉}) |
9 | bnj1442.12 | . . . . . 6 ⊢ 𝑄 = (𝑃 ∪ {〈𝑥, (𝐺‘𝑍)〉}) | |
10 | 8, 9 | eleqtrri 2836 | . . . . 5 ⊢ 〈𝑥, (𝐺‘𝑍)〉 ∈ 𝑄 |
11 | funopfv 6877 | . . . . 5 ⊢ (Fun 𝑄 → (〈𝑥, (𝐺‘𝑍)〉 ∈ 𝑄 → (𝑄‘𝑥) = (𝐺‘𝑍))) | |
12 | 4, 10, 11 | mpisyl 21 | . . . 4 ⊢ (𝜒 → (𝑄‘𝑥) = (𝐺‘𝑍)) |
13 | 2, 12 | bnj832 33037 | . . 3 ⊢ (𝜃 → (𝑄‘𝑥) = (𝐺‘𝑍)) |
14 | 1, 13 | bnj832 33037 | . 2 ⊢ (𝜂 → (𝑄‘𝑥) = (𝐺‘𝑍)) |
15 | elsni 4590 | . . . 4 ⊢ (𝑧 ∈ {𝑥} → 𝑧 = 𝑥) | |
16 | 1, 15 | simplbiim 505 | . . 3 ⊢ (𝜂 → 𝑧 = 𝑥) |
17 | 16 | fveq2d 6829 | . 2 ⊢ (𝜂 → (𝑄‘𝑧) = (𝑄‘𝑥)) |
18 | bnj602 33194 | . . . . . . . 8 ⊢ (𝑧 = 𝑥 → pred(𝑧, 𝐴, 𝑅) = pred(𝑥, 𝐴, 𝑅)) | |
19 | 18 | reseq2d 5923 | . . . . . . 7 ⊢ (𝑧 = 𝑥 → (𝑄 ↾ pred(𝑧, 𝐴, 𝑅)) = (𝑄 ↾ pred(𝑥, 𝐴, 𝑅))) |
20 | 16, 19 | syl 17 | . . . . . 6 ⊢ (𝜂 → (𝑄 ↾ pred(𝑧, 𝐴, 𝑅)) = (𝑄 ↾ pred(𝑥, 𝐴, 𝑅))) |
21 | 9 | bnj931 33049 | . . . . . . . . . 10 ⊢ 𝑃 ⊆ 𝑄 |
22 | 21 | a1i 11 | . . . . . . . . 9 ⊢ (𝜒 → 𝑃 ⊆ 𝑄) |
23 | bnj1442.7 | . . . . . . . . . . . 12 ⊢ (𝜒 ↔ (𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥)) | |
24 | bnj1442.6 | . . . . . . . . . . . . 13 ⊢ (𝜓 ↔ (𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅)) | |
25 | 24 | simplbi 498 | . . . . . . . . . . . 12 ⊢ (𝜓 → 𝑅 FrSe 𝐴) |
26 | 23, 25 | bnj835 33038 | . . . . . . . . . . 11 ⊢ (𝜒 → 𝑅 FrSe 𝐴) |
27 | bnj1442.5 | . . . . . . . . . . . 12 ⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓𝜏} | |
28 | 27, 23 | bnj1212 33078 | . . . . . . . . . . 11 ⊢ (𝜒 → 𝑥 ∈ 𝐴) |
29 | bnj906 33209 | . . . . . . . . . . 11 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → pred(𝑥, 𝐴, 𝑅) ⊆ trCl(𝑥, 𝐴, 𝑅)) | |
30 | 26, 28, 29 | syl2anc 584 | . . . . . . . . . 10 ⊢ (𝜒 → pred(𝑥, 𝐴, 𝑅) ⊆ trCl(𝑥, 𝐴, 𝑅)) |
31 | bnj1442.15 | . . . . . . . . . . 11 ⊢ (𝜒 → 𝑃 Fn trCl(𝑥, 𝐴, 𝑅)) | |
32 | 31 | fndmd 6590 | . . . . . . . . . 10 ⊢ (𝜒 → dom 𝑃 = trCl(𝑥, 𝐴, 𝑅)) |
33 | 30, 32 | sseqtrrd 3973 | . . . . . . . . 9 ⊢ (𝜒 → pred(𝑥, 𝐴, 𝑅) ⊆ dom 𝑃) |
34 | 4, 22, 33 | bnj1503 33128 | . . . . . . . 8 ⊢ (𝜒 → (𝑄 ↾ pred(𝑥, 𝐴, 𝑅)) = (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))) |
35 | 2, 34 | bnj832 33037 | . . . . . . 7 ⊢ (𝜃 → (𝑄 ↾ pred(𝑥, 𝐴, 𝑅)) = (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))) |
36 | 1, 35 | bnj832 33037 | . . . . . 6 ⊢ (𝜂 → (𝑄 ↾ pred(𝑥, 𝐴, 𝑅)) = (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))) |
37 | 20, 36 | eqtrd 2776 | . . . . 5 ⊢ (𝜂 → (𝑄 ↾ pred(𝑧, 𝐴, 𝑅)) = (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))) |
38 | 16, 37 | opeq12d 4825 | . . . 4 ⊢ (𝜂 → 〈𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))〉 = 〈𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))〉) |
39 | bnj1442.13 | . . . 4 ⊢ 𝑊 = 〈𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))〉 | |
40 | bnj1442.11 | . . . 4 ⊢ 𝑍 = 〈𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))〉 | |
41 | 38, 39, 40 | 3eqtr4g 2801 | . . 3 ⊢ (𝜂 → 𝑊 = 𝑍) |
42 | 41 | fveq2d 6829 | . 2 ⊢ (𝜂 → (𝐺‘𝑊) = (𝐺‘𝑍)) |
43 | 14, 17, 42 | 3eqtr4d 2786 | 1 ⊢ (𝜂 → (𝑄‘𝑧) = (𝐺‘𝑊)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1540 ∃wex 1780 ∈ wcel 2105 {cab 2713 ≠ wne 2940 ∀wral 3061 ∃wrex 3070 {crab 3403 [wsbc 3727 ∪ cun 3896 ⊆ wss 3898 ∅c0 4269 {csn 4573 〈cop 4579 ∪ cuni 4852 class class class wbr 5092 dom cdm 5620 ↾ cres 5622 Fun wfun 6473 Fn wfn 6474 ‘cfv 6479 predc-bnj14 32967 FrSe w-bnj15 32971 trClc-bnj18 32973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-reg 9449 ax-inf2 9498 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-om 7781 df-1o 8367 df-bnj17 32966 df-bnj14 32968 df-bnj13 32970 df-bnj15 32972 df-bnj18 32974 |
This theorem is referenced by: bnj1423 33330 |
Copyright terms: Public domain | W3C validator |