![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj91 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj91.1 | ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) |
bnj91.2 | ⊢ 𝑍 ∈ V |
Ref | Expression |
---|---|
bnj91 | ⊢ ([𝑍 / 𝑦]𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj91.1 | . . 3 ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) | |
2 | 1 | sbcbii 3865 | . 2 ⊢ ([𝑍 / 𝑦]𝜑 ↔ [𝑍 / 𝑦](𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) |
3 | bnj91.2 | . . 3 ⊢ 𝑍 ∈ V | |
4 | 3 | bnj525 34714 | . 2 ⊢ ([𝑍 / 𝑦](𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) |
5 | 2, 4 | bitri 275 | 1 ⊢ ([𝑍 / 𝑦]𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ∈ wcel 2108 Vcvv 3488 [wsbc 3804 ∅c0 4352 ‘cfv 6573 predc-bnj14 34664 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-sbc 3805 |
This theorem is referenced by: bnj118 34845 bnj125 34848 |
Copyright terms: Public domain | W3C validator |