Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj91 Structured version   Visualization version   GIF version

Theorem bnj91 34492
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj91.1 (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
bnj91.2 𝑍 ∈ V
Assertion
Ref Expression
bnj91 ([𝑍 / 𝑦]𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
Distinct variable groups:   𝑦,𝐴   𝑦,𝑅   𝑦,𝑓   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑓)   𝐴(𝑥,𝑓)   𝑅(𝑥,𝑓)   𝑍(𝑥,𝑦,𝑓)

Proof of Theorem bnj91
StepHypRef Expression
1 bnj91.1 . . 3 (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
21sbcbii 3837 . 2 ([𝑍 / 𝑦]𝜑[𝑍 / 𝑦](𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
3 bnj91.2 . . 3 𝑍 ∈ V
43bnj525 34369 . 2 ([𝑍 / 𝑦](𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
52, 4bitri 275 1 ([𝑍 / 𝑦]𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1534  wcel 2099  Vcvv 3471  [wsbc 3776  c0 4323  cfv 6548   predc-bnj14 34319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1537  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-sbc 3777
This theorem is referenced by:  bnj118  34500  bnj125  34503
  Copyright terms: Public domain W3C validator