Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj91 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj91.1 | ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) |
bnj91.2 | ⊢ 𝑍 ∈ V |
Ref | Expression |
---|---|
bnj91 | ⊢ ([𝑍 / 𝑦]𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj91.1 | . . 3 ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) | |
2 | 1 | sbcbii 3755 | . 2 ⊢ ([𝑍 / 𝑦]𝜑 ↔ [𝑍 / 𝑦](𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) |
3 | bnj91.2 | . . 3 ⊢ 𝑍 ∈ V | |
4 | 3 | bnj525 32241 | . 2 ⊢ ([𝑍 / 𝑦](𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) |
5 | 2, 4 | bitri 278 | 1 ⊢ ([𝑍 / 𝑦]𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 = wceq 1538 ∈ wcel 2111 Vcvv 3409 [wsbc 3698 ∅c0 4227 ‘cfv 6339 predc-bnj14 32190 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-12 2175 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1541 df-ex 1782 df-nf 1786 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-sbc 3699 |
This theorem is referenced by: bnj118 32373 bnj125 32376 |
Copyright terms: Public domain | W3C validator |