![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj91 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj91.1 | ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) |
bnj91.2 | ⊢ 𝑍 ∈ V |
Ref | Expression |
---|---|
bnj91 | ⊢ ([𝑍 / 𝑦]𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj91.1 | . . 3 ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) | |
2 | 1 | sbcbii 3830 | . 2 ⊢ ([𝑍 / 𝑦]𝜑 ↔ [𝑍 / 𝑦](𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) |
3 | bnj91.2 | . . 3 ⊢ 𝑍 ∈ V | |
4 | 3 | bnj525 34267 | . 2 ⊢ ([𝑍 / 𝑦](𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) |
5 | 2, 4 | bitri 275 | 1 ⊢ ([𝑍 / 𝑦]𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1533 ∈ wcel 2098 Vcvv 3466 [wsbc 3770 ∅c0 4315 ‘cfv 6534 predc-bnj14 34217 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-sbc 3771 |
This theorem is referenced by: bnj118 34398 bnj125 34401 |
Copyright terms: Public domain | W3C validator |