Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj66 Structured version   Visualization version   GIF version

Theorem bnj66 32840
Description: Technical lemma for bnj60 33042. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj66.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
bnj66.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj66.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
Assertion
Ref Expression
bnj66 (𝑔𝐶 → Rel 𝑔)
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓,𝑔   𝑓,𝐺,𝑔   𝑅,𝑓   𝑔,𝑌   𝑓,𝑑,𝑔   𝑥,𝑓,𝑔
Allowed substitution hints:   𝐴(𝑥,𝑔,𝑑)   𝐵(𝑥,𝑑)   𝐶(𝑥,𝑓,𝑔,𝑑)   𝑅(𝑥,𝑔,𝑑)   𝐺(𝑥,𝑑)   𝑌(𝑥,𝑓,𝑑)

Proof of Theorem bnj66
StepHypRef Expression
1 bnj66.3 . . . 4 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
2 fneq1 6524 . . . . . . 7 (𝑔 = 𝑓 → (𝑔 Fn 𝑑𝑓 Fn 𝑑))
3 fveq1 6773 . . . . . . . . 9 (𝑔 = 𝑓 → (𝑔𝑥) = (𝑓𝑥))
4 reseq1 5885 . . . . . . . . . . . 12 (𝑔 = 𝑓 → (𝑔 ↾ pred(𝑥, 𝐴, 𝑅)) = (𝑓 ↾ pred(𝑥, 𝐴, 𝑅)))
54opeq2d 4811 . . . . . . . . . . 11 (𝑔 = 𝑓 → ⟨𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))⟩ = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩)
6 bnj66.2 . . . . . . . . . . 11 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
75, 6eqtr4di 2796 . . . . . . . . . 10 (𝑔 = 𝑓 → ⟨𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))⟩ = 𝑌)
87fveq2d 6778 . . . . . . . . 9 (𝑔 = 𝑓 → (𝐺‘⟨𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))⟩) = (𝐺𝑌))
93, 8eqeq12d 2754 . . . . . . . 8 (𝑔 = 𝑓 → ((𝑔𝑥) = (𝐺‘⟨𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))⟩) ↔ (𝑓𝑥) = (𝐺𝑌)))
109ralbidv 3112 . . . . . . 7 (𝑔 = 𝑓 → (∀𝑥𝑑 (𝑔𝑥) = (𝐺‘⟨𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))⟩) ↔ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌)))
112, 10anbi12d 631 . . . . . 6 (𝑔 = 𝑓 → ((𝑔 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑔𝑥) = (𝐺‘⟨𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))⟩)) ↔ (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))))
1211rexbidv 3226 . . . . 5 (𝑔 = 𝑓 → (∃𝑑𝐵 (𝑔 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑔𝑥) = (𝐺‘⟨𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))⟩)) ↔ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))))
1312cbvabv 2811 . . . 4 {𝑔 ∣ ∃𝑑𝐵 (𝑔 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑔𝑥) = (𝐺‘⟨𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))⟩))} = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
141, 13eqtr4i 2769 . . 3 𝐶 = {𝑔 ∣ ∃𝑑𝐵 (𝑔 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑔𝑥) = (𝐺‘⟨𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))⟩))}
1514bnj1436 32819 . 2 (𝑔𝐶 → ∃𝑑𝐵 (𝑔 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑔𝑥) = (𝐺‘⟨𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))⟩)))
16 bnj1239 32785 . 2 (∃𝑑𝐵 (𝑔 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑔𝑥) = (𝐺‘⟨𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))⟩)) → ∃𝑑𝐵 𝑔 Fn 𝑑)
17 fnrel 6535 . . 3 (𝑔 Fn 𝑑 → Rel 𝑔)
1817rexlimivw 3211 . 2 (∃𝑑𝐵 𝑔 Fn 𝑑 → Rel 𝑔)
1915, 16, 183syl 18 1 (𝑔𝐶 → Rel 𝑔)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  {cab 2715  wral 3064  wrex 3065  wss 3887  cop 4567  cres 5591  Rel wrel 5594   Fn wfn 6428  cfv 6433   predc-bnj14 32667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-res 5601  df-iota 6391  df-fun 6435  df-fn 6436  df-fv 6441
This theorem is referenced by:  bnj1321  33007
  Copyright terms: Public domain W3C validator