Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj66 Structured version   Visualization version   GIF version

Theorem bnj66 32031
Description: Technical lemma for bnj60 32231. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj66.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
bnj66.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj66.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
Assertion
Ref Expression
bnj66 (𝑔𝐶 → Rel 𝑔)
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓,𝑔   𝑓,𝐺,𝑔   𝑅,𝑓   𝑔,𝑌   𝑓,𝑑,𝑔   𝑥,𝑓,𝑔
Allowed substitution hints:   𝐴(𝑥,𝑔,𝑑)   𝐵(𝑥,𝑑)   𝐶(𝑥,𝑓,𝑔,𝑑)   𝑅(𝑥,𝑔,𝑑)   𝐺(𝑥,𝑑)   𝑌(𝑥,𝑓,𝑑)

Proof of Theorem bnj66
StepHypRef Expression
1 bnj66.3 . . . 4 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
2 fneq1 6437 . . . . . . 7 (𝑔 = 𝑓 → (𝑔 Fn 𝑑𝑓 Fn 𝑑))
3 fveq1 6662 . . . . . . . . 9 (𝑔 = 𝑓 → (𝑔𝑥) = (𝑓𝑥))
4 reseq1 5840 . . . . . . . . . . . 12 (𝑔 = 𝑓 → (𝑔 ↾ pred(𝑥, 𝐴, 𝑅)) = (𝑓 ↾ pred(𝑥, 𝐴, 𝑅)))
54opeq2d 4802 . . . . . . . . . . 11 (𝑔 = 𝑓 → ⟨𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))⟩ = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩)
6 bnj66.2 . . . . . . . . . . 11 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
75, 6syl6eqr 2871 . . . . . . . . . 10 (𝑔 = 𝑓 → ⟨𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))⟩ = 𝑌)
87fveq2d 6667 . . . . . . . . 9 (𝑔 = 𝑓 → (𝐺‘⟨𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))⟩) = (𝐺𝑌))
93, 8eqeq12d 2834 . . . . . . . 8 (𝑔 = 𝑓 → ((𝑔𝑥) = (𝐺‘⟨𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))⟩) ↔ (𝑓𝑥) = (𝐺𝑌)))
109ralbidv 3194 . . . . . . 7 (𝑔 = 𝑓 → (∀𝑥𝑑 (𝑔𝑥) = (𝐺‘⟨𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))⟩) ↔ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌)))
112, 10anbi12d 630 . . . . . 6 (𝑔 = 𝑓 → ((𝑔 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑔𝑥) = (𝐺‘⟨𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))⟩)) ↔ (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))))
1211rexbidv 3294 . . . . 5 (𝑔 = 𝑓 → (∃𝑑𝐵 (𝑔 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑔𝑥) = (𝐺‘⟨𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))⟩)) ↔ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))))
1312cbvabv 2886 . . . 4 {𝑔 ∣ ∃𝑑𝐵 (𝑔 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑔𝑥) = (𝐺‘⟨𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))⟩))} = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
141, 13eqtr4i 2844 . . 3 𝐶 = {𝑔 ∣ ∃𝑑𝐵 (𝑔 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑔𝑥) = (𝐺‘⟨𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))⟩))}
1514bnj1436 32010 . 2 (𝑔𝐶 → ∃𝑑𝐵 (𝑔 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑔𝑥) = (𝐺‘⟨𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))⟩)))
16 bnj1239 31976 . 2 (∃𝑑𝐵 (𝑔 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑔𝑥) = (𝐺‘⟨𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))⟩)) → ∃𝑑𝐵 𝑔 Fn 𝑑)
17 fnrel 6447 . . 3 (𝑔 Fn 𝑑 → Rel 𝑔)
1817rexlimivw 3279 . 2 (∃𝑑𝐵 𝑔 Fn 𝑑 → Rel 𝑔)
1915, 16, 183syl 18 1 (𝑔𝐶 → Rel 𝑔)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wcel 2105  {cab 2796  wral 3135  wrex 3136  wss 3933  cop 4563  cres 5550  Rel wrel 5553   Fn wfn 6343  cfv 6348   predc-bnj14 31857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ral 3140  df-rex 3141  df-rab 3144  df-v 3494  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-br 5058  df-opab 5120  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-res 5560  df-iota 6307  df-fun 6350  df-fn 6351  df-fv 6356
This theorem is referenced by:  bnj1321  32196
  Copyright terms: Public domain W3C validator