Mathbox for Jonathan Ben-Naim < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj66 Structured version   Visualization version   GIF version

Theorem bnj66 32254
 Description: Technical lemma for bnj60 32456. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj66.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
bnj66.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj66.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
Assertion
Ref Expression
bnj66 (𝑔𝐶 → Rel 𝑔)
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓,𝑔   𝑓,𝐺,𝑔   𝑅,𝑓   𝑔,𝑌   𝑓,𝑑,𝑔   𝑥,𝑓,𝑔
Allowed substitution hints:   𝐴(𝑥,𝑔,𝑑)   𝐵(𝑥,𝑑)   𝐶(𝑥,𝑓,𝑔,𝑑)   𝑅(𝑥,𝑔,𝑑)   𝐺(𝑥,𝑑)   𝑌(𝑥,𝑓,𝑑)

Proof of Theorem bnj66
StepHypRef Expression
1 bnj66.3 . . . 4 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
2 fneq1 6414 . . . . . . 7 (𝑔 = 𝑓 → (𝑔 Fn 𝑑𝑓 Fn 𝑑))
3 fveq1 6644 . . . . . . . . 9 (𝑔 = 𝑓 → (𝑔𝑥) = (𝑓𝑥))
4 reseq1 5812 . . . . . . . . . . . 12 (𝑔 = 𝑓 → (𝑔 ↾ pred(𝑥, 𝐴, 𝑅)) = (𝑓 ↾ pred(𝑥, 𝐴, 𝑅)))
54opeq2d 4772 . . . . . . . . . . 11 (𝑔 = 𝑓 → ⟨𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))⟩ = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩)
6 bnj66.2 . . . . . . . . . . 11 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
75, 6eqtr4di 2851 . . . . . . . . . 10 (𝑔 = 𝑓 → ⟨𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))⟩ = 𝑌)
87fveq2d 6649 . . . . . . . . 9 (𝑔 = 𝑓 → (𝐺‘⟨𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))⟩) = (𝐺𝑌))
93, 8eqeq12d 2814 . . . . . . . 8 (𝑔 = 𝑓 → ((𝑔𝑥) = (𝐺‘⟨𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))⟩) ↔ (𝑓𝑥) = (𝐺𝑌)))
109ralbidv 3162 . . . . . . 7 (𝑔 = 𝑓 → (∀𝑥𝑑 (𝑔𝑥) = (𝐺‘⟨𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))⟩) ↔ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌)))
112, 10anbi12d 633 . . . . . 6 (𝑔 = 𝑓 → ((𝑔 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑔𝑥) = (𝐺‘⟨𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))⟩)) ↔ (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))))
1211rexbidv 3256 . . . . 5 (𝑔 = 𝑓 → (∃𝑑𝐵 (𝑔 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑔𝑥) = (𝐺‘⟨𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))⟩)) ↔ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))))
1312cbvabv 2866 . . . 4 {𝑔 ∣ ∃𝑑𝐵 (𝑔 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑔𝑥) = (𝐺‘⟨𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))⟩))} = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
141, 13eqtr4i 2824 . . 3 𝐶 = {𝑔 ∣ ∃𝑑𝐵 (𝑔 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑔𝑥) = (𝐺‘⟨𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))⟩))}
1514bnj1436 32233 . 2 (𝑔𝐶 → ∃𝑑𝐵 (𝑔 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑔𝑥) = (𝐺‘⟨𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))⟩)))
16 bnj1239 32199 . 2 (∃𝑑𝐵 (𝑔 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑔𝑥) = (𝐺‘⟨𝑥, (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))⟩)) → ∃𝑑𝐵 𝑔 Fn 𝑑)
17 fnrel 6424 . . 3 (𝑔 Fn 𝑑 → Rel 𝑔)
1817rexlimivw 3241 . 2 (∃𝑑𝐵 𝑔 Fn 𝑑 → Rel 𝑔)
1915, 16, 183syl 18 1 (𝑔𝐶 → Rel 𝑔)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111  {cab 2776  ∀wral 3106  ∃wrex 3107   ⊆ wss 3881  ⟨cop 4531   ↾ cres 5521  Rel wrel 5524   Fn wfn 6319  ‘cfv 6324   predc-bnj14 32080 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-un 3886  df-in 3888  df-ss 3898  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-res 5531  df-iota 6283  df-fun 6326  df-fn 6327  df-fv 6332 This theorem is referenced by:  bnj1321  32421
 Copyright terms: Public domain W3C validator