| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj125 | Structured version Visualization version GIF version | ||
| Description: Technical lemma for bnj150 34888. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj125.1 | ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) |
| bnj125.2 | ⊢ (𝜑′ ↔ [1o / 𝑛]𝜑) |
| bnj125.3 | ⊢ (𝜑″ ↔ [𝐹 / 𝑓]𝜑′) |
| bnj125.4 | ⊢ 𝐹 = {〈∅, pred(𝑥, 𝐴, 𝑅)〉} |
| Ref | Expression |
|---|---|
| bnj125 | ⊢ (𝜑″ ↔ (𝐹‘∅) = pred(𝑥, 𝐴, 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj125.3 | . 2 ⊢ (𝜑″ ↔ [𝐹 / 𝑓]𝜑′) | |
| 2 | bnj125.2 | . . . 4 ⊢ (𝜑′ ↔ [1o / 𝑛]𝜑) | |
| 3 | 2 | sbcbii 3793 | . . 3 ⊢ ([𝐹 / 𝑓]𝜑′ ↔ [𝐹 / 𝑓][1o / 𝑛]𝜑) |
| 4 | bnj125.1 | . . . . . 6 ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) | |
| 5 | bnj105 34736 | . . . . . 6 ⊢ 1o ∈ V | |
| 6 | 4, 5 | bnj91 34873 | . . . . 5 ⊢ ([1o / 𝑛]𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) |
| 7 | 6 | sbcbii 3793 | . . . 4 ⊢ ([𝐹 / 𝑓][1o / 𝑛]𝜑 ↔ [𝐹 / 𝑓](𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) |
| 8 | bnj125.4 | . . . . . 6 ⊢ 𝐹 = {〈∅, pred(𝑥, 𝐴, 𝑅)〉} | |
| 9 | 8 | bnj95 34876 | . . . . 5 ⊢ 𝐹 ∈ V |
| 10 | fveq1 6821 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (𝑓‘∅) = (𝐹‘∅)) | |
| 11 | 10 | eqeq1d 2733 | . . . . 5 ⊢ (𝑓 = 𝐹 → ((𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ↔ (𝐹‘∅) = pred(𝑥, 𝐴, 𝑅))) |
| 12 | 9, 11 | sbcie 3778 | . . . 4 ⊢ ([𝐹 / 𝑓](𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ↔ (𝐹‘∅) = pred(𝑥, 𝐴, 𝑅)) |
| 13 | 7, 12 | bitri 275 | . . 3 ⊢ ([𝐹 / 𝑓][1o / 𝑛]𝜑 ↔ (𝐹‘∅) = pred(𝑥, 𝐴, 𝑅)) |
| 14 | 3, 13 | bitri 275 | . 2 ⊢ ([𝐹 / 𝑓]𝜑′ ↔ (𝐹‘∅) = pred(𝑥, 𝐴, 𝑅)) |
| 15 | 1, 14 | bitri 275 | 1 ⊢ (𝜑″ ↔ (𝐹‘∅) = pred(𝑥, 𝐴, 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 [wsbc 3736 ∅c0 4280 {csn 4573 〈cop 4579 ‘cfv 6481 1oc1o 8378 predc-bnj14 34700 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-pw 4549 df-sn 4574 df-pr 4576 df-uni 4857 df-br 5090 df-suc 6312 df-iota 6437 df-fv 6489 df-1o 8385 |
| This theorem is referenced by: bnj150 34888 bnj153 34892 |
| Copyright terms: Public domain | W3C validator |