| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj125 | Structured version Visualization version GIF version | ||
| Description: Technical lemma for bnj150 34859. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj125.1 | ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) |
| bnj125.2 | ⊢ (𝜑′ ↔ [1o / 𝑛]𝜑) |
| bnj125.3 | ⊢ (𝜑″ ↔ [𝐹 / 𝑓]𝜑′) |
| bnj125.4 | ⊢ 𝐹 = {〈∅, pred(𝑥, 𝐴, 𝑅)〉} |
| Ref | Expression |
|---|---|
| bnj125 | ⊢ (𝜑″ ↔ (𝐹‘∅) = pred(𝑥, 𝐴, 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj125.3 | . 2 ⊢ (𝜑″ ↔ [𝐹 / 𝑓]𝜑′) | |
| 2 | bnj125.2 | . . . 4 ⊢ (𝜑′ ↔ [1o / 𝑛]𝜑) | |
| 3 | 2 | sbcbii 3799 | . . 3 ⊢ ([𝐹 / 𝑓]𝜑′ ↔ [𝐹 / 𝑓][1o / 𝑛]𝜑) |
| 4 | bnj125.1 | . . . . . 6 ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) | |
| 5 | bnj105 34707 | . . . . . 6 ⊢ 1o ∈ V | |
| 6 | 4, 5 | bnj91 34844 | . . . . 5 ⊢ ([1o / 𝑛]𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) |
| 7 | 6 | sbcbii 3799 | . . . 4 ⊢ ([𝐹 / 𝑓][1o / 𝑛]𝜑 ↔ [𝐹 / 𝑓](𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) |
| 8 | bnj125.4 | . . . . . 6 ⊢ 𝐹 = {〈∅, pred(𝑥, 𝐴, 𝑅)〉} | |
| 9 | 8 | bnj95 34847 | . . . . 5 ⊢ 𝐹 ∈ V |
| 10 | fveq1 6821 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (𝑓‘∅) = (𝐹‘∅)) | |
| 11 | 10 | eqeq1d 2731 | . . . . 5 ⊢ (𝑓 = 𝐹 → ((𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ↔ (𝐹‘∅) = pred(𝑥, 𝐴, 𝑅))) |
| 12 | 9, 11 | sbcie 3784 | . . . 4 ⊢ ([𝐹 / 𝑓](𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ↔ (𝐹‘∅) = pred(𝑥, 𝐴, 𝑅)) |
| 13 | 7, 12 | bitri 275 | . . 3 ⊢ ([𝐹 / 𝑓][1o / 𝑛]𝜑 ↔ (𝐹‘∅) = pred(𝑥, 𝐴, 𝑅)) |
| 14 | 3, 13 | bitri 275 | . 2 ⊢ ([𝐹 / 𝑓]𝜑′ ↔ (𝐹‘∅) = pred(𝑥, 𝐴, 𝑅)) |
| 15 | 1, 14 | bitri 275 | 1 ⊢ (𝜑″ ↔ (𝐹‘∅) = pred(𝑥, 𝐴, 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 [wsbc 3742 ∅c0 4284 {csn 4577 〈cop 4583 ‘cfv 6482 1oc1o 8381 predc-bnj14 34671 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3438 df-sbc 3743 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-pw 4553 df-sn 4578 df-pr 4580 df-uni 4859 df-br 5093 df-suc 6313 df-iota 6438 df-fv 6490 df-1o 8388 |
| This theorem is referenced by: bnj150 34859 bnj153 34863 |
| Copyright terms: Public domain | W3C validator |