Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj125 Structured version   Visualization version   GIF version

Theorem bnj125 34855
Description: Technical lemma for bnj150 34859. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj125.1 (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
bnj125.2 (𝜑′[1o / 𝑛]𝜑)
bnj125.3 (𝜑″[𝐹 / 𝑓]𝜑′)
bnj125.4 𝐹 = {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}
Assertion
Ref Expression
bnj125 (𝜑″ ↔ (𝐹‘∅) = pred(𝑥, 𝐴, 𝑅))
Distinct variable groups:   𝐴,𝑓,𝑛   𝑓,𝐹   𝑅,𝑓,𝑛   𝑥,𝑓,𝑛
Allowed substitution hints:   𝜑(𝑥,𝑓,𝑛)   𝐴(𝑥)   𝑅(𝑥)   𝐹(𝑥,𝑛)   𝜑′(𝑥,𝑓,𝑛)   𝜑″(𝑥,𝑓,𝑛)

Proof of Theorem bnj125
StepHypRef Expression
1 bnj125.3 . 2 (𝜑″[𝐹 / 𝑓]𝜑′)
2 bnj125.2 . . . 4 (𝜑′[1o / 𝑛]𝜑)
32sbcbii 3799 . . 3 ([𝐹 / 𝑓]𝜑′[𝐹 / 𝑓][1o / 𝑛]𝜑)
4 bnj125.1 . . . . . 6 (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
5 bnj105 34707 . . . . . 6 1o ∈ V
64, 5bnj91 34844 . . . . 5 ([1o / 𝑛]𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
76sbcbii 3799 . . . 4 ([𝐹 / 𝑓][1o / 𝑛]𝜑[𝐹 / 𝑓](𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
8 bnj125.4 . . . . . 6 𝐹 = {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}
98bnj95 34847 . . . . 5 𝐹 ∈ V
10 fveq1 6821 . . . . . 6 (𝑓 = 𝐹 → (𝑓‘∅) = (𝐹‘∅))
1110eqeq1d 2731 . . . . 5 (𝑓 = 𝐹 → ((𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ↔ (𝐹‘∅) = pred(𝑥, 𝐴, 𝑅)))
129, 11sbcie 3784 . . . 4 ([𝐹 / 𝑓](𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ↔ (𝐹‘∅) = pred(𝑥, 𝐴, 𝑅))
137, 12bitri 275 . . 3 ([𝐹 / 𝑓][1o / 𝑛]𝜑 ↔ (𝐹‘∅) = pred(𝑥, 𝐴, 𝑅))
143, 13bitri 275 . 2 ([𝐹 / 𝑓]𝜑′ ↔ (𝐹‘∅) = pred(𝑥, 𝐴, 𝑅))
151, 14bitri 275 1 (𝜑″ ↔ (𝐹‘∅) = pred(𝑥, 𝐴, 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  [wsbc 3742  c0 4284  {csn 4577  cop 4583  cfv 6482  1oc1o 8381   predc-bnj14 34671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3438  df-sbc 3743  df-dif 3906  df-un 3908  df-ss 3920  df-nul 4285  df-pw 4553  df-sn 4578  df-pr 4580  df-uni 4859  df-br 5093  df-suc 6313  df-iota 6438  df-fv 6490  df-1o 8388
This theorem is referenced by:  bnj150  34859  bnj153  34863
  Copyright terms: Public domain W3C validator