Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj125 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj150 32852. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj125.1 | ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) |
bnj125.2 | ⊢ (𝜑′ ↔ [1o / 𝑛]𝜑) |
bnj125.3 | ⊢ (𝜑″ ↔ [𝐹 / 𝑓]𝜑′) |
bnj125.4 | ⊢ 𝐹 = {〈∅, pred(𝑥, 𝐴, 𝑅)〉} |
Ref | Expression |
---|---|
bnj125 | ⊢ (𝜑″ ↔ (𝐹‘∅) = pred(𝑥, 𝐴, 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj125.3 | . 2 ⊢ (𝜑″ ↔ [𝐹 / 𝑓]𝜑′) | |
2 | bnj125.2 | . . . 4 ⊢ (𝜑′ ↔ [1o / 𝑛]𝜑) | |
3 | 2 | sbcbii 3781 | . . 3 ⊢ ([𝐹 / 𝑓]𝜑′ ↔ [𝐹 / 𝑓][1o / 𝑛]𝜑) |
4 | bnj125.1 | . . . . . 6 ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) | |
5 | bnj105 32699 | . . . . . 6 ⊢ 1o ∈ V | |
6 | 4, 5 | bnj91 32837 | . . . . 5 ⊢ ([1o / 𝑛]𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) |
7 | 6 | sbcbii 3781 | . . . 4 ⊢ ([𝐹 / 𝑓][1o / 𝑛]𝜑 ↔ [𝐹 / 𝑓](𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) |
8 | bnj125.4 | . . . . . 6 ⊢ 𝐹 = {〈∅, pred(𝑥, 𝐴, 𝑅)〉} | |
9 | 8 | bnj95 32840 | . . . . 5 ⊢ 𝐹 ∈ V |
10 | fveq1 6770 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (𝑓‘∅) = (𝐹‘∅)) | |
11 | 10 | eqeq1d 2742 | . . . . 5 ⊢ (𝑓 = 𝐹 → ((𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ↔ (𝐹‘∅) = pred(𝑥, 𝐴, 𝑅))) |
12 | 9, 11 | sbcie 3763 | . . . 4 ⊢ ([𝐹 / 𝑓](𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ↔ (𝐹‘∅) = pred(𝑥, 𝐴, 𝑅)) |
13 | 7, 12 | bitri 274 | . . 3 ⊢ ([𝐹 / 𝑓][1o / 𝑛]𝜑 ↔ (𝐹‘∅) = pred(𝑥, 𝐴, 𝑅)) |
14 | 3, 13 | bitri 274 | . 2 ⊢ ([𝐹 / 𝑓]𝜑′ ↔ (𝐹‘∅) = pred(𝑥, 𝐴, 𝑅)) |
15 | 1, 14 | bitri 274 | 1 ⊢ (𝜑″ ↔ (𝐹‘∅) = pred(𝑥, 𝐴, 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1542 [wsbc 3720 ∅c0 4262 {csn 4567 〈cop 4573 ‘cfv 6432 1oc1o 8281 predc-bnj14 32663 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-v 3433 df-sbc 3721 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-pw 4541 df-sn 4568 df-pr 4570 df-uni 4846 df-br 5080 df-suc 6271 df-iota 6390 df-fv 6440 df-1o 8288 |
This theorem is referenced by: bnj150 32852 bnj153 32856 |
Copyright terms: Public domain | W3C validator |