Proof of Theorem bnj92
Step | Hyp | Ref
| Expression |
1 | | bnj92.1 |
. . 3
⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
2 | 1 | sbcbii 3776 |
. 2
⊢
([𝑍 / 𝑛]𝜓 ↔ [𝑍 / 𝑛]∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
3 | | bnj92.2 |
. . 3
⊢ 𝑍 ∈ V |
4 | 3 | bnj538 32720 |
. 2
⊢
([𝑍 / 𝑛]∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ ∀𝑖 ∈ ω [𝑍 / 𝑛](suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
5 | | sbcimg 3767 |
. . . . 5
⊢ (𝑍 ∈ V → ([𝑍 / 𝑛](suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ ([𝑍 / 𝑛]suc 𝑖 ∈ 𝑛 → [𝑍 / 𝑛](𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)))) |
6 | 3, 5 | ax-mp 5 |
. . . 4
⊢
([𝑍 / 𝑛](suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ ([𝑍 / 𝑛]suc 𝑖 ∈ 𝑛 → [𝑍 / 𝑛](𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
7 | | sbcel2gv 3788 |
. . . . . 6
⊢ (𝑍 ∈ V → ([𝑍 / 𝑛]suc 𝑖 ∈ 𝑛 ↔ suc 𝑖 ∈ 𝑍)) |
8 | 3, 7 | ax-mp 5 |
. . . . 5
⊢
([𝑍 / 𝑛]suc 𝑖 ∈ 𝑛 ↔ suc 𝑖 ∈ 𝑍) |
9 | 3 | bnj525 32718 |
. . . . 5
⊢
([𝑍 / 𝑛](𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅) ↔ (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)) |
10 | 8, 9 | imbi12i 351 |
. . . 4
⊢
(([𝑍 / 𝑛]suc 𝑖 ∈ 𝑛 → [𝑍 / 𝑛](𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ (suc 𝑖 ∈ 𝑍 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
11 | 6, 10 | bitri 274 |
. . 3
⊢
([𝑍 / 𝑛](suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ (suc 𝑖 ∈ 𝑍 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
12 | 11 | ralbii 3092 |
. 2
⊢
(∀𝑖 ∈
ω [𝑍 / 𝑛](suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑍 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
13 | 2, 4, 12 | 3bitri 297 |
1
⊢
([𝑍 / 𝑛]𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑍 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |