![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj118 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj118.1 | ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) |
bnj118.2 | ⊢ (𝜑′ ↔ [1o / 𝑛]𝜑) |
Ref | Expression |
---|---|
bnj118 | ⊢ (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj118.2 | . 2 ⊢ (𝜑′ ↔ [1o / 𝑛]𝜑) | |
2 | bnj118.1 | . . 3 ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) | |
3 | bnj105 34569 | . . 3 ⊢ 1o ∈ V | |
4 | 2, 3 | bnj91 34706 | . 2 ⊢ ([1o / 𝑛]𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) |
5 | 1, 4 | bitri 274 | 1 ⊢ (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1534 [wsbc 3776 ∅c0 4325 ‘cfv 6554 1oc1o 8489 predc-bnj14 34533 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pow 5369 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-v 3464 df-sbc 3777 df-dif 3950 df-un 3952 df-ss 3964 df-nul 4326 df-pw 4609 df-sn 4634 df-suc 6382 df-1o 8496 |
This theorem is referenced by: bnj151 34722 bnj153 34725 |
Copyright terms: Public domain | W3C validator |