Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj118 Structured version   Visualization version   GIF version

Theorem bnj118 34852
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj118.1 (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
bnj118.2 (𝜑′[1o / 𝑛]𝜑)
Assertion
Ref Expression
bnj118 (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
Distinct variable groups:   𝐴,𝑛   𝑅,𝑛   𝑓,𝑛   𝑥,𝑛
Allowed substitution hints:   𝜑(𝑥,𝑓,𝑛)   𝐴(𝑥,𝑓)   𝑅(𝑥,𝑓)   𝜑′(𝑥,𝑓,𝑛)

Proof of Theorem bnj118
StepHypRef Expression
1 bnj118.2 . 2 (𝜑′[1o / 𝑛]𝜑)
2 bnj118.1 . . 3 (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
3 bnj105 34707 . . 3 1o ∈ V
42, 3bnj91 34844 . 2 ([1o / 𝑛]𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
51, 4bitri 275 1 (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  [wsbc 3750  c0 4292  cfv 6499  1oc1o 8404   predc-bnj14 34671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3446  df-sbc 3751  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-pw 4561  df-sn 4586  df-suc 6326  df-1o 8411
This theorem is referenced by:  bnj151  34860  bnj153  34863
  Copyright terms: Public domain W3C validator