| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj118 | Structured version Visualization version GIF version | ||
| Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj118.1 | ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) |
| bnj118.2 | ⊢ (𝜑′ ↔ [1o / 𝑛]𝜑) |
| Ref | Expression |
|---|---|
| bnj118 | ⊢ (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj118.2 | . 2 ⊢ (𝜑′ ↔ [1o / 𝑛]𝜑) | |
| 2 | bnj118.1 | . . 3 ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) | |
| 3 | bnj105 34722 | . . 3 ⊢ 1o ∈ V | |
| 4 | 2, 3 | bnj91 34859 | . 2 ⊢ ([1o / 𝑛]𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) |
| 5 | 1, 4 | bitri 275 | 1 ⊢ (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 [wsbc 3761 ∅c0 4304 ‘cfv 6519 1oc1o 8436 predc-bnj14 34686 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pow 5328 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3457 df-sbc 3762 df-dif 3925 df-un 3927 df-ss 3939 df-nul 4305 df-pw 4573 df-sn 4598 df-suc 6346 df-1o 8443 |
| This theorem is referenced by: bnj151 34875 bnj153 34878 |
| Copyright terms: Public domain | W3C validator |