Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj976 Structured version   Visualization version   GIF version

Theorem bnj976 34770
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj976.1 (𝜒 ↔ (𝑁𝐷𝑓 Fn 𝑁𝜑𝜓))
bnj976.2 (𝜑′[𝐺 / 𝑓]𝜑)
bnj976.3 (𝜓′[𝐺 / 𝑓]𝜓)
bnj976.4 (𝜒′[𝐺 / 𝑓]𝜒)
bnj976.5 𝐺 ∈ V
Assertion
Ref Expression
bnj976 (𝜒′ ↔ (𝑁𝐷𝐺 Fn 𝑁𝜑′𝜓′))
Distinct variable groups:   𝐷,𝑓   𝑓,𝑁
Allowed substitution hints:   𝜑(𝑓)   𝜓(𝑓)   𝜒(𝑓)   𝐺(𝑓)   𝜑′(𝑓)   𝜓′(𝑓)   𝜒′(𝑓)

Proof of Theorem bnj976
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 bnj976.4 . 2 (𝜒′[𝐺 / 𝑓]𝜒)
2 sbccow 3814 . 2 ([𝐺 / ][ / 𝑓]𝜒[𝐺 / 𝑓]𝜒)
3 bnj976.5 . . 3 𝐺 ∈ V
4 bnj252 34696 . . . . . 6 ((𝑁𝐷𝑓 Fn 𝑁𝜑𝜓) ↔ (𝑁𝐷 ∧ (𝑓 Fn 𝑁𝜑𝜓)))
54sbcbii 3852 . . . . 5 ([ / 𝑓](𝑁𝐷𝑓 Fn 𝑁𝜑𝜓) ↔ [ / 𝑓](𝑁𝐷 ∧ (𝑓 Fn 𝑁𝜑𝜓)))
6 bnj976.1 . . . . . 6 (𝜒 ↔ (𝑁𝐷𝑓 Fn 𝑁𝜑𝜓))
76sbcbii 3852 . . . . 5 ([ / 𝑓]𝜒[ / 𝑓](𝑁𝐷𝑓 Fn 𝑁𝜑𝜓))
8 vex 3482 . . . . . . . 8 ∈ V
98bnj525 34731 . . . . . . 7 ([ / 𝑓]𝑁𝐷𝑁𝐷)
10 sbc3an 3861 . . . . . . . 8 ([ / 𝑓](𝑓 Fn 𝑁𝜑𝜓) ↔ ([ / 𝑓]𝑓 Fn 𝑁[ / 𝑓]𝜑[ / 𝑓]𝜓))
11 bnj62 34713 . . . . . . . . 9 ([ / 𝑓]𝑓 Fn 𝑁 Fn 𝑁)
12113anbi1i 1156 . . . . . . . 8 (([ / 𝑓]𝑓 Fn 𝑁[ / 𝑓]𝜑[ / 𝑓]𝜓) ↔ ( Fn 𝑁[ / 𝑓]𝜑[ / 𝑓]𝜓))
1310, 12bitri 275 . . . . . . 7 ([ / 𝑓](𝑓 Fn 𝑁𝜑𝜓) ↔ ( Fn 𝑁[ / 𝑓]𝜑[ / 𝑓]𝜓))
149, 13anbi12i 628 . . . . . 6 (([ / 𝑓]𝑁𝐷[ / 𝑓](𝑓 Fn 𝑁𝜑𝜓)) ↔ (𝑁𝐷 ∧ ( Fn 𝑁[ / 𝑓]𝜑[ / 𝑓]𝜓)))
15 sbcan 3844 . . . . . 6 ([ / 𝑓](𝑁𝐷 ∧ (𝑓 Fn 𝑁𝜑𝜓)) ↔ ([ / 𝑓]𝑁𝐷[ / 𝑓](𝑓 Fn 𝑁𝜑𝜓)))
16 bnj252 34696 . . . . . 6 ((𝑁𝐷 Fn 𝑁[ / 𝑓]𝜑[ / 𝑓]𝜓) ↔ (𝑁𝐷 ∧ ( Fn 𝑁[ / 𝑓]𝜑[ / 𝑓]𝜓)))
1714, 15, 163bitr4ri 304 . . . . 5 ((𝑁𝐷 Fn 𝑁[ / 𝑓]𝜑[ / 𝑓]𝜓) ↔ [ / 𝑓](𝑁𝐷 ∧ (𝑓 Fn 𝑁𝜑𝜓)))
185, 7, 173bitr4i 303 . . . 4 ([ / 𝑓]𝜒 ↔ (𝑁𝐷 Fn 𝑁[ / 𝑓]𝜑[ / 𝑓]𝜓))
19 fneq1 6660 . . . . . . 7 ( = 𝐺 → ( Fn 𝑁𝐺 Fn 𝑁))
20 sbceq1a 3802 . . . . . . . 8 ( = 𝐺 → ([ / 𝑓]𝜑[𝐺 / ][ / 𝑓]𝜑))
21 bnj976.2 . . . . . . . . 9 (𝜑′[𝐺 / 𝑓]𝜑)
22 sbccow 3814 . . . . . . . . 9 ([𝐺 / ][ / 𝑓]𝜑[𝐺 / 𝑓]𝜑)
2321, 22bitr4i 278 . . . . . . . 8 (𝜑′[𝐺 / ][ / 𝑓]𝜑)
2420, 23bitr4di 289 . . . . . . 7 ( = 𝐺 → ([ / 𝑓]𝜑𝜑′))
25 sbceq1a 3802 . . . . . . . 8 ( = 𝐺 → ([ / 𝑓]𝜓[𝐺 / ][ / 𝑓]𝜓))
26 bnj976.3 . . . . . . . . 9 (𝜓′[𝐺 / 𝑓]𝜓)
27 sbccow 3814 . . . . . . . . 9 ([𝐺 / ][ / 𝑓]𝜓[𝐺 / 𝑓]𝜓)
2826, 27bitr4i 278 . . . . . . . 8 (𝜓′[𝐺 / ][ / 𝑓]𝜓)
2925, 28bitr4di 289 . . . . . . 7 ( = 𝐺 → ([ / 𝑓]𝜓𝜓′))
3019, 24, 293anbi123d 1435 . . . . . 6 ( = 𝐺 → (( Fn 𝑁[ / 𝑓]𝜑[ / 𝑓]𝜓) ↔ (𝐺 Fn 𝑁𝜑′𝜓′)))
3130anbi2d 630 . . . . 5 ( = 𝐺 → ((𝑁𝐷 ∧ ( Fn 𝑁[ / 𝑓]𝜑[ / 𝑓]𝜓)) ↔ (𝑁𝐷 ∧ (𝐺 Fn 𝑁𝜑′𝜓′))))
32 bnj252 34696 . . . . 5 ((𝑁𝐷𝐺 Fn 𝑁𝜑′𝜓′) ↔ (𝑁𝐷 ∧ (𝐺 Fn 𝑁𝜑′𝜓′)))
3331, 16, 323bitr4g 314 . . . 4 ( = 𝐺 → ((𝑁𝐷 Fn 𝑁[ / 𝑓]𝜑[ / 𝑓]𝜓) ↔ (𝑁𝐷𝐺 Fn 𝑁𝜑′𝜓′)))
3418, 33bitrid 283 . . 3 ( = 𝐺 → ([ / 𝑓]𝜒 ↔ (𝑁𝐷𝐺 Fn 𝑁𝜑′𝜓′)))
353, 34sbcie 3835 . 2 ([𝐺 / ][ / 𝑓]𝜒 ↔ (𝑁𝐷𝐺 Fn 𝑁𝜑′𝜓′))
361, 2, 353bitr2i 299 1 (𝜒′ ↔ (𝑁𝐷𝐺 Fn 𝑁𝜑′𝜓′))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  Vcvv 3478  [wsbc 3791   Fn wfn 6558  w-bnj17 34679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-12 2175  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-fun 6565  df-fn 6566  df-bnj17 34680
This theorem is referenced by:  bnj910  34941  bnj999  34951  bnj907  34960
  Copyright terms: Public domain W3C validator