Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brresi2 Structured version   Visualization version   GIF version

Theorem brresi2 37680
Description: Restriction of a binary relation. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypothesis
Ref Expression
brresi2.1 𝐵 ∈ V
Assertion
Ref Expression
brresi2 (𝐴(𝑅𝐶)𝐵𝐴𝑅𝐵)

Proof of Theorem brresi2
StepHypRef Expression
1 resss 6031 . 2 (𝑅𝐶) ⊆ 𝑅
21ssbri 5211 1 (𝐴(𝑅𝐶)𝐵𝐴𝑅𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  Vcvv 3488   class class class wbr 5166  cres 5702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-in 3983  df-ss 3993  df-br 5167  df-res 5712
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator