| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brresi2 | Structured version Visualization version GIF version | ||
| Description: Restriction of a binary relation. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| brresi2.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| brresi2 | ⊢ (𝐴(𝑅 ↾ 𝐶)𝐵 → 𝐴𝑅𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resss 5949 | . 2 ⊢ (𝑅 ↾ 𝐶) ⊆ 𝑅 | |
| 2 | 1 | ssbri 5134 | 1 ⊢ (𝐴(𝑅 ↾ 𝐶)𝐵 → 𝐴𝑅𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 Vcvv 3436 class class class wbr 5089 ↾ cres 5616 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-in 3904 df-ss 3914 df-br 5090 df-res 5626 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |