Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brresi2 Structured version   Visualization version   GIF version

Theorem brresi2 35804
Description: Restriction of a binary relation. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypothesis
Ref Expression
brresi2.1 𝐵 ∈ V
Assertion
Ref Expression
brresi2 (𝐴(𝑅𝐶)𝐵𝐴𝑅𝐵)

Proof of Theorem brresi2
StepHypRef Expression
1 resss 5905 . 2 (𝑅𝐶) ⊆ 𝑅
21ssbri 5115 1 (𝐴(𝑅𝐶)𝐵𝐴𝑅𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  Vcvv 3422   class class class wbr 5070  cres 5582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-in 3890  df-ss 3900  df-br 5071  df-res 5592
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator