Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cocanfo Structured version   Visualization version   GIF version

Theorem cocanfo 35008
Description: Cancellation of a surjective function from the right side of a composition. (Contributed by Jeff Madsen, 1-Jun-2011.) (Proof shortened by Mario Carneiro, 27-Dec-2014.)
Assertion
Ref Expression
cocanfo (((𝐹:𝐴onto𝐵𝐺 Fn 𝐵𝐻 Fn 𝐵) ∧ (𝐺𝐹) = (𝐻𝐹)) → 𝐺 = 𝐻)

Proof of Theorem cocanfo
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 767 . . . . . 6 ((((𝐹:𝐴onto𝐵𝐺 Fn 𝐵𝐻 Fn 𝐵) ∧ (𝐺𝐹) = (𝐻𝐹)) ∧ 𝑦𝐴) → (𝐺𝐹) = (𝐻𝐹))
21fveq1d 6672 . . . . 5 ((((𝐹:𝐴onto𝐵𝐺 Fn 𝐵𝐻 Fn 𝐵) ∧ (𝐺𝐹) = (𝐻𝐹)) ∧ 𝑦𝐴) → ((𝐺𝐹)‘𝑦) = ((𝐻𝐹)‘𝑦))
3 simpl1 1187 . . . . . . 7 (((𝐹:𝐴onto𝐵𝐺 Fn 𝐵𝐻 Fn 𝐵) ∧ (𝐺𝐹) = (𝐻𝐹)) → 𝐹:𝐴onto𝐵)
4 fof 6590 . . . . . . 7 (𝐹:𝐴onto𝐵𝐹:𝐴𝐵)
53, 4syl 17 . . . . . 6 (((𝐹:𝐴onto𝐵𝐺 Fn 𝐵𝐻 Fn 𝐵) ∧ (𝐺𝐹) = (𝐻𝐹)) → 𝐹:𝐴𝐵)
6 fvco3 6760 . . . . . 6 ((𝐹:𝐴𝐵𝑦𝐴) → ((𝐺𝐹)‘𝑦) = (𝐺‘(𝐹𝑦)))
75, 6sylan 582 . . . . 5 ((((𝐹:𝐴onto𝐵𝐺 Fn 𝐵𝐻 Fn 𝐵) ∧ (𝐺𝐹) = (𝐻𝐹)) ∧ 𝑦𝐴) → ((𝐺𝐹)‘𝑦) = (𝐺‘(𝐹𝑦)))
8 fvco3 6760 . . . . . 6 ((𝐹:𝐴𝐵𝑦𝐴) → ((𝐻𝐹)‘𝑦) = (𝐻‘(𝐹𝑦)))
95, 8sylan 582 . . . . 5 ((((𝐹:𝐴onto𝐵𝐺 Fn 𝐵𝐻 Fn 𝐵) ∧ (𝐺𝐹) = (𝐻𝐹)) ∧ 𝑦𝐴) → ((𝐻𝐹)‘𝑦) = (𝐻‘(𝐹𝑦)))
102, 7, 93eqtr3d 2864 . . . 4 ((((𝐹:𝐴onto𝐵𝐺 Fn 𝐵𝐻 Fn 𝐵) ∧ (𝐺𝐹) = (𝐻𝐹)) ∧ 𝑦𝐴) → (𝐺‘(𝐹𝑦)) = (𝐻‘(𝐹𝑦)))
1110ralrimiva 3182 . . 3 (((𝐹:𝐴onto𝐵𝐺 Fn 𝐵𝐻 Fn 𝐵) ∧ (𝐺𝐹) = (𝐻𝐹)) → ∀𝑦𝐴 (𝐺‘(𝐹𝑦)) = (𝐻‘(𝐹𝑦)))
12 fveq2 6670 . . . . . 6 ((𝐹𝑦) = 𝑥 → (𝐺‘(𝐹𝑦)) = (𝐺𝑥))
13 fveq2 6670 . . . . . 6 ((𝐹𝑦) = 𝑥 → (𝐻‘(𝐹𝑦)) = (𝐻𝑥))
1412, 13eqeq12d 2837 . . . . 5 ((𝐹𝑦) = 𝑥 → ((𝐺‘(𝐹𝑦)) = (𝐻‘(𝐹𝑦)) ↔ (𝐺𝑥) = (𝐻𝑥)))
1514cbvfo 7045 . . . 4 (𝐹:𝐴onto𝐵 → (∀𝑦𝐴 (𝐺‘(𝐹𝑦)) = (𝐻‘(𝐹𝑦)) ↔ ∀𝑥𝐵 (𝐺𝑥) = (𝐻𝑥)))
163, 15syl 17 . . 3 (((𝐹:𝐴onto𝐵𝐺 Fn 𝐵𝐻 Fn 𝐵) ∧ (𝐺𝐹) = (𝐻𝐹)) → (∀𝑦𝐴 (𝐺‘(𝐹𝑦)) = (𝐻‘(𝐹𝑦)) ↔ ∀𝑥𝐵 (𝐺𝑥) = (𝐻𝑥)))
1711, 16mpbid 234 . 2 (((𝐹:𝐴onto𝐵𝐺 Fn 𝐵𝐻 Fn 𝐵) ∧ (𝐺𝐹) = (𝐻𝐹)) → ∀𝑥𝐵 (𝐺𝑥) = (𝐻𝑥))
18 eqfnfv 6802 . . . 4 ((𝐺 Fn 𝐵𝐻 Fn 𝐵) → (𝐺 = 𝐻 ↔ ∀𝑥𝐵 (𝐺𝑥) = (𝐻𝑥)))
19183adant1 1126 . . 3 ((𝐹:𝐴onto𝐵𝐺 Fn 𝐵𝐻 Fn 𝐵) → (𝐺 = 𝐻 ↔ ∀𝑥𝐵 (𝐺𝑥) = (𝐻𝑥)))
2019adantr 483 . 2 (((𝐹:𝐴onto𝐵𝐺 Fn 𝐵𝐻 Fn 𝐵) ∧ (𝐺𝐹) = (𝐻𝐹)) → (𝐺 = 𝐻 ↔ ∀𝑥𝐵 (𝐺𝑥) = (𝐻𝑥)))
2117, 20mpbird 259 1 (((𝐹:𝐴onto𝐵𝐺 Fn 𝐵𝐻 Fn 𝐵) ∧ (𝐺𝐹) = (𝐻𝐹)) → 𝐺 = 𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3138  ccom 5559   Fn wfn 6350  wf 6351  ontowfo 6353  cfv 6355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-fo 6361  df-fv 6363
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator