| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simplr 769 | . . . . . 6
⊢ ((((𝐹:𝐴–onto→𝐵 ∧ 𝐺 Fn 𝐵 ∧ 𝐻 Fn 𝐵) ∧ (𝐺 ∘ 𝐹) = (𝐻 ∘ 𝐹)) ∧ 𝑦 ∈ 𝐴) → (𝐺 ∘ 𝐹) = (𝐻 ∘ 𝐹)) | 
| 2 | 1 | fveq1d 6908 | . . . . 5
⊢ ((((𝐹:𝐴–onto→𝐵 ∧ 𝐺 Fn 𝐵 ∧ 𝐻 Fn 𝐵) ∧ (𝐺 ∘ 𝐹) = (𝐻 ∘ 𝐹)) ∧ 𝑦 ∈ 𝐴) → ((𝐺 ∘ 𝐹)‘𝑦) = ((𝐻 ∘ 𝐹)‘𝑦)) | 
| 3 |  | simpl1 1192 | . . . . . . 7
⊢ (((𝐹:𝐴–onto→𝐵 ∧ 𝐺 Fn 𝐵 ∧ 𝐻 Fn 𝐵) ∧ (𝐺 ∘ 𝐹) = (𝐻 ∘ 𝐹)) → 𝐹:𝐴–onto→𝐵) | 
| 4 |  | fof 6820 | . . . . . . 7
⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) | 
| 5 | 3, 4 | syl 17 | . . . . . 6
⊢ (((𝐹:𝐴–onto→𝐵 ∧ 𝐺 Fn 𝐵 ∧ 𝐻 Fn 𝐵) ∧ (𝐺 ∘ 𝐹) = (𝐻 ∘ 𝐹)) → 𝐹:𝐴⟶𝐵) | 
| 6 |  | fvco3 7008 | . . . . . 6
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑦 ∈ 𝐴) → ((𝐺 ∘ 𝐹)‘𝑦) = (𝐺‘(𝐹‘𝑦))) | 
| 7 | 5, 6 | sylan 580 | . . . . 5
⊢ ((((𝐹:𝐴–onto→𝐵 ∧ 𝐺 Fn 𝐵 ∧ 𝐻 Fn 𝐵) ∧ (𝐺 ∘ 𝐹) = (𝐻 ∘ 𝐹)) ∧ 𝑦 ∈ 𝐴) → ((𝐺 ∘ 𝐹)‘𝑦) = (𝐺‘(𝐹‘𝑦))) | 
| 8 |  | fvco3 7008 | . . . . . 6
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑦 ∈ 𝐴) → ((𝐻 ∘ 𝐹)‘𝑦) = (𝐻‘(𝐹‘𝑦))) | 
| 9 | 5, 8 | sylan 580 | . . . . 5
⊢ ((((𝐹:𝐴–onto→𝐵 ∧ 𝐺 Fn 𝐵 ∧ 𝐻 Fn 𝐵) ∧ (𝐺 ∘ 𝐹) = (𝐻 ∘ 𝐹)) ∧ 𝑦 ∈ 𝐴) → ((𝐻 ∘ 𝐹)‘𝑦) = (𝐻‘(𝐹‘𝑦))) | 
| 10 | 2, 7, 9 | 3eqtr3d 2785 | . . . 4
⊢ ((((𝐹:𝐴–onto→𝐵 ∧ 𝐺 Fn 𝐵 ∧ 𝐻 Fn 𝐵) ∧ (𝐺 ∘ 𝐹) = (𝐻 ∘ 𝐹)) ∧ 𝑦 ∈ 𝐴) → (𝐺‘(𝐹‘𝑦)) = (𝐻‘(𝐹‘𝑦))) | 
| 11 | 10 | ralrimiva 3146 | . . 3
⊢ (((𝐹:𝐴–onto→𝐵 ∧ 𝐺 Fn 𝐵 ∧ 𝐻 Fn 𝐵) ∧ (𝐺 ∘ 𝐹) = (𝐻 ∘ 𝐹)) → ∀𝑦 ∈ 𝐴 (𝐺‘(𝐹‘𝑦)) = (𝐻‘(𝐹‘𝑦))) | 
| 12 |  | fveq2 6906 | . . . . . 6
⊢ ((𝐹‘𝑦) = 𝑥 → (𝐺‘(𝐹‘𝑦)) = (𝐺‘𝑥)) | 
| 13 |  | fveq2 6906 | . . . . . 6
⊢ ((𝐹‘𝑦) = 𝑥 → (𝐻‘(𝐹‘𝑦)) = (𝐻‘𝑥)) | 
| 14 | 12, 13 | eqeq12d 2753 | . . . . 5
⊢ ((𝐹‘𝑦) = 𝑥 → ((𝐺‘(𝐹‘𝑦)) = (𝐻‘(𝐹‘𝑦)) ↔ (𝐺‘𝑥) = (𝐻‘𝑥))) | 
| 15 | 14 | cbvfo 7309 | . . . 4
⊢ (𝐹:𝐴–onto→𝐵 → (∀𝑦 ∈ 𝐴 (𝐺‘(𝐹‘𝑦)) = (𝐻‘(𝐹‘𝑦)) ↔ ∀𝑥 ∈ 𝐵 (𝐺‘𝑥) = (𝐻‘𝑥))) | 
| 16 | 3, 15 | syl 17 | . . 3
⊢ (((𝐹:𝐴–onto→𝐵 ∧ 𝐺 Fn 𝐵 ∧ 𝐻 Fn 𝐵) ∧ (𝐺 ∘ 𝐹) = (𝐻 ∘ 𝐹)) → (∀𝑦 ∈ 𝐴 (𝐺‘(𝐹‘𝑦)) = (𝐻‘(𝐹‘𝑦)) ↔ ∀𝑥 ∈ 𝐵 (𝐺‘𝑥) = (𝐻‘𝑥))) | 
| 17 | 11, 16 | mpbid 232 | . 2
⊢ (((𝐹:𝐴–onto→𝐵 ∧ 𝐺 Fn 𝐵 ∧ 𝐻 Fn 𝐵) ∧ (𝐺 ∘ 𝐹) = (𝐻 ∘ 𝐹)) → ∀𝑥 ∈ 𝐵 (𝐺‘𝑥) = (𝐻‘𝑥)) | 
| 18 |  | eqfnfv 7051 | . . . 4
⊢ ((𝐺 Fn 𝐵 ∧ 𝐻 Fn 𝐵) → (𝐺 = 𝐻 ↔ ∀𝑥 ∈ 𝐵 (𝐺‘𝑥) = (𝐻‘𝑥))) | 
| 19 | 18 | 3adant1 1131 | . . 3
⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝐺 Fn 𝐵 ∧ 𝐻 Fn 𝐵) → (𝐺 = 𝐻 ↔ ∀𝑥 ∈ 𝐵 (𝐺‘𝑥) = (𝐻‘𝑥))) | 
| 20 | 19 | adantr 480 | . 2
⊢ (((𝐹:𝐴–onto→𝐵 ∧ 𝐺 Fn 𝐵 ∧ 𝐻 Fn 𝐵) ∧ (𝐺 ∘ 𝐹) = (𝐻 ∘ 𝐹)) → (𝐺 = 𝐻 ↔ ∀𝑥 ∈ 𝐵 (𝐺‘𝑥) = (𝐻‘𝑥))) | 
| 21 | 17, 20 | mpbird 257 | 1
⊢ (((𝐹:𝐴–onto→𝐵 ∧ 𝐺 Fn 𝐵 ∧ 𝐻 Fn 𝐵) ∧ (𝐺 ∘ 𝐹) = (𝐻 ∘ 𝐹)) → 𝐺 = 𝐻) |