Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cocanfo Structured version   Visualization version   GIF version

Theorem cocanfo 37780
Description: Cancellation of a surjective function from the right side of a composition. (Contributed by Jeff Madsen, 1-Jun-2011.) (Proof shortened by Mario Carneiro, 27-Dec-2014.)
Assertion
Ref Expression
cocanfo (((𝐹:𝐴onto𝐵𝐺 Fn 𝐵𝐻 Fn 𝐵) ∧ (𝐺𝐹) = (𝐻𝐹)) → 𝐺 = 𝐻)

Proof of Theorem cocanfo
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 768 . . . . . 6 ((((𝐹:𝐴onto𝐵𝐺 Fn 𝐵𝐻 Fn 𝐵) ∧ (𝐺𝐹) = (𝐻𝐹)) ∧ 𝑦𝐴) → (𝐺𝐹) = (𝐻𝐹))
21fveq1d 6830 . . . . 5 ((((𝐹:𝐴onto𝐵𝐺 Fn 𝐵𝐻 Fn 𝐵) ∧ (𝐺𝐹) = (𝐻𝐹)) ∧ 𝑦𝐴) → ((𝐺𝐹)‘𝑦) = ((𝐻𝐹)‘𝑦))
3 simpl1 1192 . . . . . . 7 (((𝐹:𝐴onto𝐵𝐺 Fn 𝐵𝐻 Fn 𝐵) ∧ (𝐺𝐹) = (𝐻𝐹)) → 𝐹:𝐴onto𝐵)
4 fof 6740 . . . . . . 7 (𝐹:𝐴onto𝐵𝐹:𝐴𝐵)
53, 4syl 17 . . . . . 6 (((𝐹:𝐴onto𝐵𝐺 Fn 𝐵𝐻 Fn 𝐵) ∧ (𝐺𝐹) = (𝐻𝐹)) → 𝐹:𝐴𝐵)
6 fvco3 6927 . . . . . 6 ((𝐹:𝐴𝐵𝑦𝐴) → ((𝐺𝐹)‘𝑦) = (𝐺‘(𝐹𝑦)))
75, 6sylan 580 . . . . 5 ((((𝐹:𝐴onto𝐵𝐺 Fn 𝐵𝐻 Fn 𝐵) ∧ (𝐺𝐹) = (𝐻𝐹)) ∧ 𝑦𝐴) → ((𝐺𝐹)‘𝑦) = (𝐺‘(𝐹𝑦)))
8 fvco3 6927 . . . . . 6 ((𝐹:𝐴𝐵𝑦𝐴) → ((𝐻𝐹)‘𝑦) = (𝐻‘(𝐹𝑦)))
95, 8sylan 580 . . . . 5 ((((𝐹:𝐴onto𝐵𝐺 Fn 𝐵𝐻 Fn 𝐵) ∧ (𝐺𝐹) = (𝐻𝐹)) ∧ 𝑦𝐴) → ((𝐻𝐹)‘𝑦) = (𝐻‘(𝐹𝑦)))
102, 7, 93eqtr3d 2776 . . . 4 ((((𝐹:𝐴onto𝐵𝐺 Fn 𝐵𝐻 Fn 𝐵) ∧ (𝐺𝐹) = (𝐻𝐹)) ∧ 𝑦𝐴) → (𝐺‘(𝐹𝑦)) = (𝐻‘(𝐹𝑦)))
1110ralrimiva 3125 . . 3 (((𝐹:𝐴onto𝐵𝐺 Fn 𝐵𝐻 Fn 𝐵) ∧ (𝐺𝐹) = (𝐻𝐹)) → ∀𝑦𝐴 (𝐺‘(𝐹𝑦)) = (𝐻‘(𝐹𝑦)))
12 fveq2 6828 . . . . . 6 ((𝐹𝑦) = 𝑥 → (𝐺‘(𝐹𝑦)) = (𝐺𝑥))
13 fveq2 6828 . . . . . 6 ((𝐹𝑦) = 𝑥 → (𝐻‘(𝐹𝑦)) = (𝐻𝑥))
1412, 13eqeq12d 2749 . . . . 5 ((𝐹𝑦) = 𝑥 → ((𝐺‘(𝐹𝑦)) = (𝐻‘(𝐹𝑦)) ↔ (𝐺𝑥) = (𝐻𝑥)))
1514cbvfo 7229 . . . 4 (𝐹:𝐴onto𝐵 → (∀𝑦𝐴 (𝐺‘(𝐹𝑦)) = (𝐻‘(𝐹𝑦)) ↔ ∀𝑥𝐵 (𝐺𝑥) = (𝐻𝑥)))
163, 15syl 17 . . 3 (((𝐹:𝐴onto𝐵𝐺 Fn 𝐵𝐻 Fn 𝐵) ∧ (𝐺𝐹) = (𝐻𝐹)) → (∀𝑦𝐴 (𝐺‘(𝐹𝑦)) = (𝐻‘(𝐹𝑦)) ↔ ∀𝑥𝐵 (𝐺𝑥) = (𝐻𝑥)))
1711, 16mpbid 232 . 2 (((𝐹:𝐴onto𝐵𝐺 Fn 𝐵𝐻 Fn 𝐵) ∧ (𝐺𝐹) = (𝐻𝐹)) → ∀𝑥𝐵 (𝐺𝑥) = (𝐻𝑥))
18 eqfnfv 6970 . . . 4 ((𝐺 Fn 𝐵𝐻 Fn 𝐵) → (𝐺 = 𝐻 ↔ ∀𝑥𝐵 (𝐺𝑥) = (𝐻𝑥)))
19183adant1 1130 . . 3 ((𝐹:𝐴onto𝐵𝐺 Fn 𝐵𝐻 Fn 𝐵) → (𝐺 = 𝐻 ↔ ∀𝑥𝐵 (𝐺𝑥) = (𝐻𝑥)))
2019adantr 480 . 2 (((𝐹:𝐴onto𝐵𝐺 Fn 𝐵𝐻 Fn 𝐵) ∧ (𝐺𝐹) = (𝐻𝐹)) → (𝐺 = 𝐻 ↔ ∀𝑥𝐵 (𝐺𝑥) = (𝐻𝑥)))
2117, 20mpbird 257 1 (((𝐹:𝐴onto𝐵𝐺 Fn 𝐵𝐻 Fn 𝐵) ∧ (𝐺𝐹) = (𝐻𝐹)) → 𝐺 = 𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wral 3048  ccom 5623   Fn wfn 6481  wf 6482  ontowfo 6484  cfv 6486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fo 6492  df-fv 6494
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator