Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cocanfo Structured version   Visualization version   GIF version

Theorem cocanfo 37758
Description: Cancellation of a surjective function from the right side of a composition. (Contributed by Jeff Madsen, 1-Jun-2011.) (Proof shortened by Mario Carneiro, 27-Dec-2014.)
Assertion
Ref Expression
cocanfo (((𝐹:𝐴onto𝐵𝐺 Fn 𝐵𝐻 Fn 𝐵) ∧ (𝐺𝐹) = (𝐻𝐹)) → 𝐺 = 𝐻)

Proof of Theorem cocanfo
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 768 . . . . . 6 ((((𝐹:𝐴onto𝐵𝐺 Fn 𝐵𝐻 Fn 𝐵) ∧ (𝐺𝐹) = (𝐻𝐹)) ∧ 𝑦𝐴) → (𝐺𝐹) = (𝐻𝐹))
21fveq1d 6824 . . . . 5 ((((𝐹:𝐴onto𝐵𝐺 Fn 𝐵𝐻 Fn 𝐵) ∧ (𝐺𝐹) = (𝐻𝐹)) ∧ 𝑦𝐴) → ((𝐺𝐹)‘𝑦) = ((𝐻𝐹)‘𝑦))
3 simpl1 1192 . . . . . . 7 (((𝐹:𝐴onto𝐵𝐺 Fn 𝐵𝐻 Fn 𝐵) ∧ (𝐺𝐹) = (𝐻𝐹)) → 𝐹:𝐴onto𝐵)
4 fof 6735 . . . . . . 7 (𝐹:𝐴onto𝐵𝐹:𝐴𝐵)
53, 4syl 17 . . . . . 6 (((𝐹:𝐴onto𝐵𝐺 Fn 𝐵𝐻 Fn 𝐵) ∧ (𝐺𝐹) = (𝐻𝐹)) → 𝐹:𝐴𝐵)
6 fvco3 6921 . . . . . 6 ((𝐹:𝐴𝐵𝑦𝐴) → ((𝐺𝐹)‘𝑦) = (𝐺‘(𝐹𝑦)))
75, 6sylan 580 . . . . 5 ((((𝐹:𝐴onto𝐵𝐺 Fn 𝐵𝐻 Fn 𝐵) ∧ (𝐺𝐹) = (𝐻𝐹)) ∧ 𝑦𝐴) → ((𝐺𝐹)‘𝑦) = (𝐺‘(𝐹𝑦)))
8 fvco3 6921 . . . . . 6 ((𝐹:𝐴𝐵𝑦𝐴) → ((𝐻𝐹)‘𝑦) = (𝐻‘(𝐹𝑦)))
95, 8sylan 580 . . . . 5 ((((𝐹:𝐴onto𝐵𝐺 Fn 𝐵𝐻 Fn 𝐵) ∧ (𝐺𝐹) = (𝐻𝐹)) ∧ 𝑦𝐴) → ((𝐻𝐹)‘𝑦) = (𝐻‘(𝐹𝑦)))
102, 7, 93eqtr3d 2774 . . . 4 ((((𝐹:𝐴onto𝐵𝐺 Fn 𝐵𝐻 Fn 𝐵) ∧ (𝐺𝐹) = (𝐻𝐹)) ∧ 𝑦𝐴) → (𝐺‘(𝐹𝑦)) = (𝐻‘(𝐹𝑦)))
1110ralrimiva 3124 . . 3 (((𝐹:𝐴onto𝐵𝐺 Fn 𝐵𝐻 Fn 𝐵) ∧ (𝐺𝐹) = (𝐻𝐹)) → ∀𝑦𝐴 (𝐺‘(𝐹𝑦)) = (𝐻‘(𝐹𝑦)))
12 fveq2 6822 . . . . . 6 ((𝐹𝑦) = 𝑥 → (𝐺‘(𝐹𝑦)) = (𝐺𝑥))
13 fveq2 6822 . . . . . 6 ((𝐹𝑦) = 𝑥 → (𝐻‘(𝐹𝑦)) = (𝐻𝑥))
1412, 13eqeq12d 2747 . . . . 5 ((𝐹𝑦) = 𝑥 → ((𝐺‘(𝐹𝑦)) = (𝐻‘(𝐹𝑦)) ↔ (𝐺𝑥) = (𝐻𝑥)))
1514cbvfo 7223 . . . 4 (𝐹:𝐴onto𝐵 → (∀𝑦𝐴 (𝐺‘(𝐹𝑦)) = (𝐻‘(𝐹𝑦)) ↔ ∀𝑥𝐵 (𝐺𝑥) = (𝐻𝑥)))
163, 15syl 17 . . 3 (((𝐹:𝐴onto𝐵𝐺 Fn 𝐵𝐻 Fn 𝐵) ∧ (𝐺𝐹) = (𝐻𝐹)) → (∀𝑦𝐴 (𝐺‘(𝐹𝑦)) = (𝐻‘(𝐹𝑦)) ↔ ∀𝑥𝐵 (𝐺𝑥) = (𝐻𝑥)))
1711, 16mpbid 232 . 2 (((𝐹:𝐴onto𝐵𝐺 Fn 𝐵𝐻 Fn 𝐵) ∧ (𝐺𝐹) = (𝐻𝐹)) → ∀𝑥𝐵 (𝐺𝑥) = (𝐻𝑥))
18 eqfnfv 6964 . . . 4 ((𝐺 Fn 𝐵𝐻 Fn 𝐵) → (𝐺 = 𝐻 ↔ ∀𝑥𝐵 (𝐺𝑥) = (𝐻𝑥)))
19183adant1 1130 . . 3 ((𝐹:𝐴onto𝐵𝐺 Fn 𝐵𝐻 Fn 𝐵) → (𝐺 = 𝐻 ↔ ∀𝑥𝐵 (𝐺𝑥) = (𝐻𝑥)))
2019adantr 480 . 2 (((𝐹:𝐴onto𝐵𝐺 Fn 𝐵𝐻 Fn 𝐵) ∧ (𝐺𝐹) = (𝐻𝐹)) → (𝐺 = 𝐻 ↔ ∀𝑥𝐵 (𝐺𝑥) = (𝐻𝑥)))
2117, 20mpbird 257 1 (((𝐹:𝐴onto𝐵𝐺 Fn 𝐵𝐻 Fn 𝐵) ∧ (𝐺𝐹) = (𝐻𝐹)) → 𝐺 = 𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  ccom 5620   Fn wfn 6476  wf 6477  ontowfo 6479  cfv 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fo 6487  df-fv 6489
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator