Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cocanfo Structured version   Visualization version   GIF version

Theorem cocanfo 37713
Description: Cancellation of a surjective function from the right side of a composition. (Contributed by Jeff Madsen, 1-Jun-2011.) (Proof shortened by Mario Carneiro, 27-Dec-2014.)
Assertion
Ref Expression
cocanfo (((𝐹:𝐴onto𝐵𝐺 Fn 𝐵𝐻 Fn 𝐵) ∧ (𝐺𝐹) = (𝐻𝐹)) → 𝐺 = 𝐻)

Proof of Theorem cocanfo
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 768 . . . . . 6 ((((𝐹:𝐴onto𝐵𝐺 Fn 𝐵𝐻 Fn 𝐵) ∧ (𝐺𝐹) = (𝐻𝐹)) ∧ 𝑦𝐴) → (𝐺𝐹) = (𝐻𝐹))
21fveq1d 6860 . . . . 5 ((((𝐹:𝐴onto𝐵𝐺 Fn 𝐵𝐻 Fn 𝐵) ∧ (𝐺𝐹) = (𝐻𝐹)) ∧ 𝑦𝐴) → ((𝐺𝐹)‘𝑦) = ((𝐻𝐹)‘𝑦))
3 simpl1 1192 . . . . . . 7 (((𝐹:𝐴onto𝐵𝐺 Fn 𝐵𝐻 Fn 𝐵) ∧ (𝐺𝐹) = (𝐻𝐹)) → 𝐹:𝐴onto𝐵)
4 fof 6772 . . . . . . 7 (𝐹:𝐴onto𝐵𝐹:𝐴𝐵)
53, 4syl 17 . . . . . 6 (((𝐹:𝐴onto𝐵𝐺 Fn 𝐵𝐻 Fn 𝐵) ∧ (𝐺𝐹) = (𝐻𝐹)) → 𝐹:𝐴𝐵)
6 fvco3 6960 . . . . . 6 ((𝐹:𝐴𝐵𝑦𝐴) → ((𝐺𝐹)‘𝑦) = (𝐺‘(𝐹𝑦)))
75, 6sylan 580 . . . . 5 ((((𝐹:𝐴onto𝐵𝐺 Fn 𝐵𝐻 Fn 𝐵) ∧ (𝐺𝐹) = (𝐻𝐹)) ∧ 𝑦𝐴) → ((𝐺𝐹)‘𝑦) = (𝐺‘(𝐹𝑦)))
8 fvco3 6960 . . . . . 6 ((𝐹:𝐴𝐵𝑦𝐴) → ((𝐻𝐹)‘𝑦) = (𝐻‘(𝐹𝑦)))
95, 8sylan 580 . . . . 5 ((((𝐹:𝐴onto𝐵𝐺 Fn 𝐵𝐻 Fn 𝐵) ∧ (𝐺𝐹) = (𝐻𝐹)) ∧ 𝑦𝐴) → ((𝐻𝐹)‘𝑦) = (𝐻‘(𝐹𝑦)))
102, 7, 93eqtr3d 2772 . . . 4 ((((𝐹:𝐴onto𝐵𝐺 Fn 𝐵𝐻 Fn 𝐵) ∧ (𝐺𝐹) = (𝐻𝐹)) ∧ 𝑦𝐴) → (𝐺‘(𝐹𝑦)) = (𝐻‘(𝐹𝑦)))
1110ralrimiva 3125 . . 3 (((𝐹:𝐴onto𝐵𝐺 Fn 𝐵𝐻 Fn 𝐵) ∧ (𝐺𝐹) = (𝐻𝐹)) → ∀𝑦𝐴 (𝐺‘(𝐹𝑦)) = (𝐻‘(𝐹𝑦)))
12 fveq2 6858 . . . . . 6 ((𝐹𝑦) = 𝑥 → (𝐺‘(𝐹𝑦)) = (𝐺𝑥))
13 fveq2 6858 . . . . . 6 ((𝐹𝑦) = 𝑥 → (𝐻‘(𝐹𝑦)) = (𝐻𝑥))
1412, 13eqeq12d 2745 . . . . 5 ((𝐹𝑦) = 𝑥 → ((𝐺‘(𝐹𝑦)) = (𝐻‘(𝐹𝑦)) ↔ (𝐺𝑥) = (𝐻𝑥)))
1514cbvfo 7264 . . . 4 (𝐹:𝐴onto𝐵 → (∀𝑦𝐴 (𝐺‘(𝐹𝑦)) = (𝐻‘(𝐹𝑦)) ↔ ∀𝑥𝐵 (𝐺𝑥) = (𝐻𝑥)))
163, 15syl 17 . . 3 (((𝐹:𝐴onto𝐵𝐺 Fn 𝐵𝐻 Fn 𝐵) ∧ (𝐺𝐹) = (𝐻𝐹)) → (∀𝑦𝐴 (𝐺‘(𝐹𝑦)) = (𝐻‘(𝐹𝑦)) ↔ ∀𝑥𝐵 (𝐺𝑥) = (𝐻𝑥)))
1711, 16mpbid 232 . 2 (((𝐹:𝐴onto𝐵𝐺 Fn 𝐵𝐻 Fn 𝐵) ∧ (𝐺𝐹) = (𝐻𝐹)) → ∀𝑥𝐵 (𝐺𝑥) = (𝐻𝑥))
18 eqfnfv 7003 . . . 4 ((𝐺 Fn 𝐵𝐻 Fn 𝐵) → (𝐺 = 𝐻 ↔ ∀𝑥𝐵 (𝐺𝑥) = (𝐻𝑥)))
19183adant1 1130 . . 3 ((𝐹:𝐴onto𝐵𝐺 Fn 𝐵𝐻 Fn 𝐵) → (𝐺 = 𝐻 ↔ ∀𝑥𝐵 (𝐺𝑥) = (𝐻𝑥)))
2019adantr 480 . 2 (((𝐹:𝐴onto𝐵𝐺 Fn 𝐵𝐻 Fn 𝐵) ∧ (𝐺𝐹) = (𝐻𝐹)) → (𝐺 = 𝐻 ↔ ∀𝑥𝐵 (𝐺𝑥) = (𝐻𝑥)))
2117, 20mpbird 257 1 (((𝐹:𝐴onto𝐵𝐺 Fn 𝐵𝐻 Fn 𝐵) ∧ (𝐺𝐹) = (𝐻𝐹)) → 𝐺 = 𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  ccom 5642   Fn wfn 6506  wf 6507  ontowfo 6509  cfv 6511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fo 6517  df-fv 6519
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator