Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > resss | Structured version Visualization version GIF version |
Description: A class includes its restriction. Exercise 15 of [TakeutiZaring] p. 25. (Contributed by NM, 2-Aug-1994.) |
Ref | Expression |
---|---|
resss | ⊢ (𝐴 ↾ 𝐵) ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-res 5601 | . 2 ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) | |
2 | inss1 4162 | . 2 ⊢ (𝐴 ∩ (𝐵 × V)) ⊆ 𝐴 | |
3 | 1, 2 | eqsstri 3955 | 1 ⊢ (𝐴 ↾ 𝐵) ⊆ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: Vcvv 3432 ∩ cin 3886 ⊆ wss 3887 × cxp 5587 ↾ cres 5591 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 df-res 5601 |
This theorem is referenced by: rnresss 5927 relssres 5932 resexg 5937 iss 5943 mptss 5950 relresfld 6179 funres 6476 funres11 6511 funcnvres 6512 2elresin 6553 fssres 6640 foimacnv 6733 frxp 7967 fnwelem 7972 tposss 8043 dftpos4 8061 smores 8183 smores2 8185 tfrlem15 8223 finresfin 9045 fidomdm 9096 imafiALT 9112 marypha1lem 9192 hartogslem1 9301 r0weon 9768 ackbij2lem3 9997 axdc3lem2 10207 dmct 10280 smobeth 10342 wunres 10487 vdwnnlem1 16696 symgsssg 19075 symgfisg 19076 psgnunilem5 19102 odf1o2 19178 gsumzres 19510 gsumzaddlem 19522 gsumzadd 19523 gsum2dlem2 19572 dprdfadd 19623 dprdres 19631 dprd2dlem1 19644 dprd2da 19645 lindfres 21030 opsrtoslem2 21263 txss12 22756 txbasval 22757 fmss 23097 ustneism 23375 trust 23381 isngp2 23753 equivcau 24464 metsscmetcld 24479 volf 24693 dvcnvrelem1 25181 tdeglem4OLD 25225 pserdv 25588 dvlog 25806 dchrelbas2 26385 issubgr2 27639 subgrprop2 27641 uhgrspansubgr 27658 hlimadd 29555 hlimcaui 29598 hhssabloilem 29623 hhsst 29628 hhsssh2 29632 hhsscms 29640 occllem 29665 nlelchi 30423 hmopidmchi 30513 fnresin 30961 fressupp 31022 imafi2 31046 pfxrn2 31214 omsmon 32265 carsggect 32285 eulerpartlemmf 32342 funpartss 34246 brresi2 35877 bnd2lem 35949 idresssidinxp 36444 disjimres 36858 diophrw 40581 dnnumch2 40870 lmhmlnmsplit 40912 hbtlem6 40954 dfrcl2 41282 relexpaddss 41326 cotrclrcl 41350 frege131d 41372 resimass 42784 fourierdlem42 43690 fourierdlem80 43727 setrecsres 46407 |
Copyright terms: Public domain | W3C validator |