| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resss | Structured version Visualization version GIF version | ||
| Description: A class includes its restriction. Exercise 15 of [TakeutiZaring] p. 25. (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| resss | ⊢ (𝐴 ↾ 𝐵) ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-res 5650 | . 2 ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) | |
| 2 | inss1 4200 | . 2 ⊢ (𝐴 ∩ (𝐵 × V)) ⊆ 𝐴 | |
| 3 | 1, 2 | eqsstri 3993 | 1 ⊢ (𝐴 ↾ 𝐵) ⊆ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3447 ∩ cin 3913 ⊆ wss 3914 × cxp 5636 ↾ cres 5640 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-in 3921 df-ss 3931 df-res 5650 |
| This theorem is referenced by: dmresss 5982 rnresss 5988 relssres 5993 resexg 5998 iss 6006 mptss 6013 relresfld 6249 funres 6558 funres11 6593 funcnvres 6594 2elresin 6639 fssres 6726 foimacnv 6817 frxp 8105 fnwelem 8110 tposss 8206 dftpos4 8224 smores 8321 smores2 8323 tfrlem15 8360 finresfin 9215 imafi 9264 fidomdm 9285 marypha1lem 9384 hartogslem1 9495 r0weon 9965 ackbij2lem3 10193 axdc3lem2 10404 dmct 10477 smobeth 10539 wunres 10684 vdwnnlem1 16966 symgsssg 19397 symgfisg 19398 psgnunilem5 19424 odf1o2 19503 gsumzres 19839 gsumzaddlem 19851 gsumzadd 19852 gsum2dlem2 19901 dprdfadd 19952 dprdres 19960 dprd2dlem1 19973 dprd2da 19974 lindfres 21732 opsrtoslem2 21963 txss12 23492 txbasval 23493 fmss 23833 ustneism 24111 trust 24117 isngp2 24485 equivcau 25200 metsscmetcld 25215 volf 25430 dvcnvrelem1 25922 pserdv 26339 dvlog 26560 dchrelbas2 27148 issubgr2 29199 subgrprop2 29201 uhgrspansubgr 29218 hlimadd 31122 hlimcaui 31165 hhssabloilem 31190 hhsst 31195 hhsssh2 31199 hhsscms 31207 occllem 31232 nlelchi 31990 hmopidmchi 32080 fnresin 32550 fressupp 32611 imafi2 32635 pfxrn2 32861 omsmon 34289 carsggect 34309 eulerpartlemmf 34366 funpartss 35932 brresi2 37714 bnd2lem 37785 idresssidinxp 38296 disjimres 38742 aks6d1c2 42118 eqresfnbd 42220 diophrw 42747 dnnumch2 43034 lmhmlnmsplit 43076 hbtlem6 43118 dfrcl2 43663 relexpaddss 43707 cotrclrcl 43731 frege131d 43753 resimass 45234 fourierdlem42 46147 fourierdlem80 46184 isubgredgss 47865 isubgrsubgr 47869 setrecsres 49691 |
| Copyright terms: Public domain | W3C validator |