| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resss | Structured version Visualization version GIF version | ||
| Description: A class includes its restriction. Exercise 15 of [TakeutiZaring] p. 25. (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| resss | ⊢ (𝐴 ↾ 𝐵) ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-res 5631 | . 2 ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) | |
| 2 | inss1 4188 | . 2 ⊢ (𝐴 ∩ (𝐵 × V)) ⊆ 𝐴 | |
| 3 | 1, 2 | eqsstri 3982 | 1 ⊢ (𝐴 ↾ 𝐵) ⊆ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3436 ∩ cin 3902 ⊆ wss 3903 × cxp 5617 ↾ cres 5621 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3438 df-in 3910 df-ss 3920 df-res 5631 |
| This theorem is referenced by: dmresss 5962 rnresss 5968 relssres 5973 resexg 5978 iss 5986 mptss 5993 relresfld 6224 funres 6524 funres11 6559 funcnvres 6560 2elresin 6603 fssres 6690 foimacnv 6781 frxp 8059 fnwelem 8064 tposss 8160 dftpos4 8178 smores 8275 smores2 8277 tfrlem15 8314 finresfin 9161 imafi 9204 fidomdm 9224 marypha1lem 9323 hartogslem1 9434 r0weon 9906 ackbij2lem3 10134 axdc3lem2 10345 dmct 10418 smobeth 10480 wunres 10625 vdwnnlem1 16907 symgsssg 19346 symgfisg 19347 psgnunilem5 19373 odf1o2 19452 gsumzres 19788 gsumzaddlem 19800 gsumzadd 19801 gsum2dlem2 19850 dprdfadd 19901 dprdres 19909 dprd2dlem1 19922 dprd2da 19923 lindfres 21730 opsrtoslem2 21961 txss12 23490 txbasval 23491 fmss 23831 ustneism 24109 trust 24115 isngp2 24483 equivcau 25198 metsscmetcld 25213 volf 25428 dvcnvrelem1 25920 pserdv 26337 dvlog 26558 dchrelbas2 27146 issubgr2 29217 subgrprop2 29219 uhgrspansubgr 29236 hlimadd 31137 hlimcaui 31180 hhssabloilem 31205 hhsst 31210 hhsssh2 31214 hhsscms 31222 occllem 31247 nlelchi 32005 hmopidmchi 32095 fnresin 32569 fressupp 32631 imafi2 32655 pfxrn2 32882 omsmon 34272 carsggect 34292 eulerpartlemmf 34349 funpartss 35928 brresi2 37710 bnd2lem 37781 idresssidinxp 38292 disjimres 38738 aks6d1c2 42113 eqresfnbd 42215 diophrw 42742 dnnumch2 43028 lmhmlnmsplit 43070 hbtlem6 43112 dfrcl2 43657 relexpaddss 43701 cotrclrcl 43725 frege131d 43747 resimass 45228 fourierdlem42 46140 fourierdlem80 46177 isubgredgss 47859 isubgrsubgr 47863 setrecsres 49697 |
| Copyright terms: Public domain | W3C validator |