Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > resss | Structured version Visualization version GIF version |
Description: A class includes its restriction. Exercise 15 of [TakeutiZaring] p. 25. (Contributed by NM, 2-Aug-1994.) |
Ref | Expression |
---|---|
resss | ⊢ (𝐴 ↾ 𝐵) ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-res 5592 | . 2 ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) | |
2 | inss1 4159 | . 2 ⊢ (𝐴 ∩ (𝐵 × V)) ⊆ 𝐴 | |
3 | 1, 2 | eqsstri 3951 | 1 ⊢ (𝐴 ↾ 𝐵) ⊆ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: Vcvv 3422 ∩ cin 3882 ⊆ wss 3883 × cxp 5578 ↾ cres 5582 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-res 5592 |
This theorem is referenced by: rnresss 5916 relssres 5921 resexg 5926 iss 5932 mptss 5939 relresfld 6168 funres 6460 funres11 6495 funcnvres 6496 2elresin 6537 fssres 6624 foimacnv 6717 frxp 7938 fnwelem 7943 tposss 8014 dftpos4 8032 smores 8154 smores2 8156 tfrlem15 8194 finresfin 8974 fidomdm 9026 imafiALT 9042 marypha1lem 9122 hartogslem1 9231 r0weon 9699 ackbij2lem3 9928 axdc3lem2 10138 dmct 10211 smobeth 10273 wunres 10418 vdwnnlem1 16624 symgsssg 18990 symgfisg 18991 psgnunilem5 19017 odf1o2 19093 gsumzres 19425 gsumzaddlem 19437 gsumzadd 19438 gsum2dlem2 19487 dprdfadd 19538 dprdres 19546 dprd2dlem1 19559 dprd2da 19560 lindfres 20940 opsrtoslem2 21173 txss12 22664 txbasval 22665 fmss 23005 ustneism 23283 trust 23289 isngp2 23659 equivcau 24369 metsscmetcld 24384 volf 24598 dvcnvrelem1 25086 tdeglem4OLD 25130 pserdv 25493 dvlog 25711 dchrelbas2 26290 issubgr2 27542 subgrprop2 27544 uhgrspansubgr 27561 hlimadd 29456 hlimcaui 29499 hhssabloilem 29524 hhsst 29529 hhsssh2 29533 hhsscms 29541 occllem 29566 nlelchi 30324 hmopidmchi 30414 fnresin 30862 fressupp 30924 imafi2 30948 pfxrn2 31116 omsmon 32165 carsggect 32185 eulerpartlemmf 32242 funpartss 34173 brresi2 35804 bnd2lem 35876 idresssidinxp 36371 disjimres 36785 diophrw 40497 dnnumch2 40786 lmhmlnmsplit 40828 hbtlem6 40870 dfrcl2 41171 relexpaddss 41215 cotrclrcl 41239 frege131d 41261 resimass 42673 fourierdlem42 43580 fourierdlem80 43617 setrecsres 46293 |
Copyright terms: Public domain | W3C validator |