| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resss | Structured version Visualization version GIF version | ||
| Description: A class includes its restriction. Exercise 15 of [TakeutiZaring] p. 25. (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| resss | ⊢ (𝐴 ↾ 𝐵) ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-res 5671 | . 2 ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) | |
| 2 | inss1 4217 | . 2 ⊢ (𝐴 ∩ (𝐵 × V)) ⊆ 𝐴 | |
| 3 | 1, 2 | eqsstri 4010 | 1 ⊢ (𝐴 ↾ 𝐵) ⊆ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3464 ∩ cin 3930 ⊆ wss 3931 × cxp 5657 ↾ cres 5661 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-in 3938 df-ss 3948 df-res 5671 |
| This theorem is referenced by: dmresss 6003 rnresss 6009 relssres 6014 resexg 6019 iss 6027 mptss 6034 relresfld 6270 funres 6583 funres11 6618 funcnvres 6619 2elresin 6664 fssres 6749 foimacnv 6840 frxp 8130 fnwelem 8135 tposss 8231 dftpos4 8249 smores 8371 smores2 8373 tfrlem15 8411 finresfin 9281 imafi 9330 fidomdm 9351 marypha1lem 9450 hartogslem1 9561 r0weon 10031 ackbij2lem3 10259 axdc3lem2 10470 dmct 10543 smobeth 10605 wunres 10750 vdwnnlem1 17020 symgsssg 19453 symgfisg 19454 psgnunilem5 19480 odf1o2 19559 gsumzres 19895 gsumzaddlem 19907 gsumzadd 19908 gsum2dlem2 19957 dprdfadd 20008 dprdres 20016 dprd2dlem1 20029 dprd2da 20030 lindfres 21788 opsrtoslem2 22019 txss12 23548 txbasval 23549 fmss 23889 ustneism 24167 trust 24173 isngp2 24541 equivcau 25257 metsscmetcld 25272 volf 25487 dvcnvrelem1 25979 pserdv 26396 dvlog 26617 dchrelbas2 27205 issubgr2 29256 subgrprop2 29258 uhgrspansubgr 29275 hlimadd 31179 hlimcaui 31222 hhssabloilem 31247 hhsst 31252 hhsssh2 31256 hhsscms 31264 occllem 31289 nlelchi 32047 hmopidmchi 32137 fnresin 32609 fressupp 32670 imafi2 32694 pfxrn2 32920 omsmon 34335 carsggect 34355 eulerpartlemmf 34412 funpartss 35967 brresi2 37749 bnd2lem 37820 idresssidinxp 38331 disjimres 38773 aks6d1c2 42148 eqresfnbd 42250 diophrw 42757 dnnumch2 43044 lmhmlnmsplit 43086 hbtlem6 43128 dfrcl2 43673 relexpaddss 43717 cotrclrcl 43741 frege131d 43763 resimass 45244 fourierdlem42 46158 fourierdlem80 46195 isubgredgss 47858 isubgrsubgr 47862 setrecsres 49546 |
| Copyright terms: Public domain | W3C validator |