Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > resss | Structured version Visualization version GIF version |
Description: A class includes its restriction. Exercise 15 of [TakeutiZaring] p. 25. (Contributed by NM, 2-Aug-1994.) |
Ref | Expression |
---|---|
resss | ⊢ (𝐴 ↾ 𝐵) ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-res 5563 | . 2 ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) | |
2 | inss1 4143 | . 2 ⊢ (𝐴 ∩ (𝐵 × V)) ⊆ 𝐴 | |
3 | 1, 2 | eqsstri 3935 | 1 ⊢ (𝐴 ↾ 𝐵) ⊆ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: Vcvv 3408 ∩ cin 3865 ⊆ wss 3866 × cxp 5549 ↾ cres 5553 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1546 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-v 3410 df-in 3873 df-ss 3883 df-res 5563 |
This theorem is referenced by: rnresss 5887 relssres 5892 resexg 5897 iss 5903 mptss 5910 relresfld 6139 funres 6422 funres11 6457 funcnvres 6458 2elresin 6498 fssres 6585 foimacnv 6678 frxp 7893 fnwelem 7898 tposss 7969 dftpos4 7987 smores 8089 smores2 8091 tfrlem15 8128 finresfin 8901 fidomdm 8953 imafiALT 8969 marypha1lem 9049 hartogslem1 9158 r0weon 9626 ackbij2lem3 9855 axdc3lem2 10065 dmct 10138 smobeth 10200 wunres 10345 vdwnnlem1 16548 symgsssg 18859 symgfisg 18860 psgnunilem5 18886 odf1o2 18962 gsumzres 19294 gsumzaddlem 19306 gsumzadd 19307 gsum2dlem2 19356 dprdfadd 19407 dprdres 19415 dprd2dlem1 19428 dprd2da 19429 lindfres 20785 opsrtoslem2 21013 txss12 22502 txbasval 22503 fmss 22843 ustneism 23121 trust 23127 isngp2 23495 equivcau 24197 metsscmetcld 24212 volf 24426 dvcnvrelem1 24914 tdeglem4OLD 24958 pserdv 25321 dvlog 25539 dchrelbas2 26118 issubgr2 27360 subgrprop2 27362 uhgrspansubgr 27379 hlimadd 29274 hlimcaui 29317 hhssabloilem 29342 hhsst 29347 hhsssh2 29351 hhsscms 29359 occllem 29384 nlelchi 30142 hmopidmchi 30232 fnresin 30680 fressupp 30742 imafi2 30766 pfxrn2 30934 omsmon 31977 carsggect 31997 eulerpartlemmf 32054 funpartss 33983 brresi2 35614 bnd2lem 35686 idresssidinxp 36181 disjimres 36595 diophrw 40284 dnnumch2 40573 lmhmlnmsplit 40615 hbtlem6 40657 dfrcl2 40959 relexpaddss 41003 cotrclrcl 41027 frege131d 41049 resimass 42456 fourierdlem42 43365 fourierdlem80 43402 setrecsres 46078 |
Copyright terms: Public domain | W3C validator |