![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resss | Structured version Visualization version GIF version |
Description: A class includes its restriction. Exercise 15 of [TakeutiZaring] p. 25. (Contributed by NM, 2-Aug-1994.) |
Ref | Expression |
---|---|
resss | ⊢ (𝐴 ↾ 𝐵) ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-res 5701 | . 2 ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) | |
2 | inss1 4245 | . 2 ⊢ (𝐴 ∩ (𝐵 × V)) ⊆ 𝐴 | |
3 | 1, 2 | eqsstri 4030 | 1 ⊢ (𝐴 ↾ 𝐵) ⊆ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: Vcvv 3478 ∩ cin 3962 ⊆ wss 3963 × cxp 5687 ↾ cres 5691 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-in 3970 df-ss 3980 df-res 5701 |
This theorem is referenced by: dmresss 6031 rnresss 6037 relssres 6042 resexg 6047 iss 6055 mptss 6062 relresfld 6298 funres 6610 funres11 6645 funcnvres 6646 2elresin 6690 fssres 6775 foimacnv 6866 frxp 8150 fnwelem 8155 tposss 8251 dftpos4 8269 smores 8391 smores2 8393 tfrlem15 8431 finresfin 9302 imafi 9351 fidomdm 9372 marypha1lem 9471 hartogslem1 9580 r0weon 10050 ackbij2lem3 10278 axdc3lem2 10489 dmct 10562 smobeth 10624 wunres 10769 vdwnnlem1 17029 symgsssg 19500 symgfisg 19501 psgnunilem5 19527 odf1o2 19606 gsumzres 19942 gsumzaddlem 19954 gsumzadd 19955 gsum2dlem2 20004 dprdfadd 20055 dprdres 20063 dprd2dlem1 20076 dprd2da 20077 lindfres 21861 opsrtoslem2 22098 txss12 23629 txbasval 23630 fmss 23970 ustneism 24248 trust 24254 isngp2 24626 equivcau 25348 metsscmetcld 25363 volf 25578 dvcnvrelem1 26071 pserdv 26488 dvlog 26708 dchrelbas2 27296 issubgr2 29304 subgrprop2 29306 uhgrspansubgr 29323 hlimadd 31222 hlimcaui 31265 hhssabloilem 31290 hhsst 31295 hhsssh2 31299 hhsscms 31307 occllem 31332 nlelchi 32090 hmopidmchi 32180 fnresin 32643 fressupp 32703 imafi2 32729 pfxrn2 32909 omsmon 34280 carsggect 34300 eulerpartlemmf 34357 funpartss 35926 brresi2 37707 bnd2lem 37778 idresssidinxp 38290 disjimres 38732 aks6d1c2 42112 eqresfnbd 42252 diophrw 42747 dnnumch2 43034 lmhmlnmsplit 43076 hbtlem6 43118 dfrcl2 43664 relexpaddss 43708 cotrclrcl 43732 frege131d 43754 resimass 45184 fourierdlem42 46105 fourierdlem80 46142 isubgredgss 47789 isubgrsubgr 47793 setrecsres 48933 |
Copyright terms: Public domain | W3C validator |