![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resss | Structured version Visualization version GIF version |
Description: A class includes its restriction. Exercise 15 of [TakeutiZaring] p. 25. (Contributed by NM, 2-Aug-1994.) |
Ref | Expression |
---|---|
resss | ⊢ (𝐴 ↾ 𝐵) ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-res 5712 | . 2 ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) | |
2 | inss1 4258 | . 2 ⊢ (𝐴 ∩ (𝐵 × V)) ⊆ 𝐴 | |
3 | 1, 2 | eqsstri 4043 | 1 ⊢ (𝐴 ↾ 𝐵) ⊆ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: Vcvv 3488 ∩ cin 3975 ⊆ wss 3976 × cxp 5698 ↾ cres 5702 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-in 3983 df-ss 3993 df-res 5712 |
This theorem is referenced by: dmresss 6040 rnresss 6046 relssres 6051 resexg 6056 iss 6064 mptss 6071 relresfld 6307 funres 6620 funres11 6655 funcnvres 6656 2elresin 6701 fssres 6787 foimacnv 6879 frxp 8167 fnwelem 8172 tposss 8268 dftpos4 8286 smores 8408 smores2 8410 tfrlem15 8448 finresfin 9332 imafi 9381 fidomdm 9402 marypha1lem 9502 hartogslem1 9611 r0weon 10081 ackbij2lem3 10309 axdc3lem2 10520 dmct 10593 smobeth 10655 wunres 10800 vdwnnlem1 17042 symgsssg 19509 symgfisg 19510 psgnunilem5 19536 odf1o2 19615 gsumzres 19951 gsumzaddlem 19963 gsumzadd 19964 gsum2dlem2 20013 dprdfadd 20064 dprdres 20072 dprd2dlem1 20085 dprd2da 20086 lindfres 21866 opsrtoslem2 22103 txss12 23634 txbasval 23635 fmss 23975 ustneism 24253 trust 24259 isngp2 24631 equivcau 25353 metsscmetcld 25368 volf 25583 dvcnvrelem1 26076 pserdv 26491 dvlog 26711 dchrelbas2 27299 issubgr2 29307 subgrprop2 29309 uhgrspansubgr 29326 hlimadd 31225 hlimcaui 31268 hhssabloilem 31293 hhsst 31298 hhsssh2 31302 hhsscms 31310 occllem 31335 nlelchi 32093 hmopidmchi 32183 fnresin 32645 fressupp 32700 imafi2 32725 pfxrn2 32906 omsmon 34263 carsggect 34283 eulerpartlemmf 34340 funpartss 35908 brresi2 37680 bnd2lem 37751 idresssidinxp 38264 disjimres 38706 aks6d1c2 42087 eqresfnbd 42227 diophrw 42715 dnnumch2 43002 lmhmlnmsplit 43044 hbtlem6 43086 dfrcl2 43636 relexpaddss 43680 cotrclrcl 43704 frege131d 43726 resimass 45148 fourierdlem42 46070 fourierdlem80 46107 isubgrsubgr 47739 setrecsres 48794 |
Copyright terms: Public domain | W3C validator |