| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resss | Structured version Visualization version GIF version | ||
| Description: A class includes its restriction. Exercise 15 of [TakeutiZaring] p. 25. (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| resss | ⊢ (𝐴 ↾ 𝐵) ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-res 5643 | . 2 ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) | |
| 2 | inss1 4196 | . 2 ⊢ (𝐴 ∩ (𝐵 × V)) ⊆ 𝐴 | |
| 3 | 1, 2 | eqsstri 3990 | 1 ⊢ (𝐴 ↾ 𝐵) ⊆ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3444 ∩ cin 3910 ⊆ wss 3911 × cxp 5629 ↾ cres 5633 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-in 3918 df-ss 3928 df-res 5643 |
| This theorem is referenced by: dmresss 5971 rnresss 5977 relssres 5982 resexg 5987 iss 5995 mptss 6002 relresfld 6237 funres 6542 funres11 6577 funcnvres 6578 2elresin 6621 fssres 6708 foimacnv 6799 frxp 8082 fnwelem 8087 tposss 8183 dftpos4 8201 smores 8298 smores2 8300 tfrlem15 8337 finresfin 9191 imafi 9240 fidomdm 9261 marypha1lem 9360 hartogslem1 9471 r0weon 9941 ackbij2lem3 10169 axdc3lem2 10380 dmct 10453 smobeth 10515 wunres 10660 vdwnnlem1 16942 symgsssg 19381 symgfisg 19382 psgnunilem5 19408 odf1o2 19487 gsumzres 19823 gsumzaddlem 19835 gsumzadd 19836 gsum2dlem2 19885 dprdfadd 19936 dprdres 19944 dprd2dlem1 19957 dprd2da 19958 lindfres 21765 opsrtoslem2 21996 txss12 23525 txbasval 23526 fmss 23866 ustneism 24144 trust 24150 isngp2 24518 equivcau 25233 metsscmetcld 25248 volf 25463 dvcnvrelem1 25955 pserdv 26372 dvlog 26593 dchrelbas2 27181 issubgr2 29252 subgrprop2 29254 uhgrspansubgr 29271 hlimadd 31172 hlimcaui 31215 hhssabloilem 31240 hhsst 31245 hhsssh2 31249 hhsscms 31257 occllem 31282 nlelchi 32040 hmopidmchi 32130 fnresin 32600 fressupp 32661 imafi2 32685 pfxrn2 32911 omsmon 34282 carsggect 34302 eulerpartlemmf 34359 funpartss 35925 brresi2 37707 bnd2lem 37778 idresssidinxp 38289 disjimres 38735 aks6d1c2 42111 eqresfnbd 42213 diophrw 42740 dnnumch2 43027 lmhmlnmsplit 43069 hbtlem6 43111 dfrcl2 43656 relexpaddss 43700 cotrclrcl 43724 frege131d 43746 resimass 45227 fourierdlem42 46140 fourierdlem80 46177 isubgredgss 47858 isubgrsubgr 47862 setrecsres 49684 |
| Copyright terms: Public domain | W3C validator |