| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resss | Structured version Visualization version GIF version | ||
| Description: A class includes its restriction. Exercise 15 of [TakeutiZaring] p. 25. (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| resss | ⊢ (𝐴 ↾ 𝐵) ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-res 5626 | . 2 ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) | |
| 2 | inss1 4184 | . 2 ⊢ (𝐴 ∩ (𝐵 × V)) ⊆ 𝐴 | |
| 3 | 1, 2 | eqsstri 3976 | 1 ⊢ (𝐴 ↾ 𝐵) ⊆ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3436 ∩ cin 3896 ⊆ wss 3897 × cxp 5612 ↾ cres 5616 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-in 3904 df-ss 3914 df-res 5626 |
| This theorem is referenced by: dmresss 5959 rnresss 5965 relssres 5970 resexg 5975 iss 5983 mptss 5990 relresfld 6223 funres 6523 funres11 6558 funcnvres 6559 2elresin 6602 fssres 6689 foimacnv 6780 frxp 8056 fnwelem 8061 tposss 8157 dftpos4 8175 smores 8272 smores2 8274 tfrlem15 8311 finresfin 9156 imafi 9199 fidomdm 9218 marypha1lem 9317 hartogslem1 9428 r0weon 9903 ackbij2lem3 10131 axdc3lem2 10342 dmct 10415 smobeth 10477 wunres 10622 vdwnnlem1 16907 symgsssg 19379 symgfisg 19380 psgnunilem5 19406 odf1o2 19485 gsumzres 19821 gsumzaddlem 19833 gsumzadd 19834 gsum2dlem2 19883 dprdfadd 19934 dprdres 19942 dprd2dlem1 19955 dprd2da 19956 lindfres 21760 opsrtoslem2 21991 txss12 23520 txbasval 23521 fmss 23861 ustneism 24139 trust 24144 isngp2 24512 equivcau 25227 metsscmetcld 25242 volf 25457 dvcnvrelem1 25949 pserdv 26366 dvlog 26587 dchrelbas2 27175 issubgr2 29250 subgrprop2 29252 uhgrspansubgr 29269 hlimadd 31173 hlimcaui 31216 hhssabloilem 31241 hhsst 31246 hhsssh2 31250 hhsscms 31258 occllem 31283 nlelchi 32041 hmopidmchi 32131 fnresin 32607 fressupp 32669 imafi2 32693 pfxrn2 32921 omsmon 34311 carsggect 34331 eulerpartlemmf 34388 funpartss 35988 brresi2 37770 bnd2lem 37841 idresssidinxp 38356 disjimres 38858 aks6d1c2 42233 eqresfnbd 42335 diophrw 42862 dnnumch2 43148 lmhmlnmsplit 43190 hbtlem6 43232 dfrcl2 43777 relexpaddss 43821 cotrclrcl 43845 frege131d 43867 resimass 45347 fourierdlem42 46257 fourierdlem80 46294 isubgredgss 47975 isubgrsubgr 47979 setrecsres 49813 |
| Copyright terms: Public domain | W3C validator |