Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssbri | Structured version Visualization version GIF version |
Description: Inference from a subclass relationship of binary relations. (Contributed by NM, 28-Mar-2007.) (Revised by Mario Carneiro, 8-Feb-2015.) |
Ref | Expression |
---|---|
ssbri.1 | ⊢ 𝐴 ⊆ 𝐵 |
Ref | Expression |
---|---|
ssbri | ⊢ (𝐶𝐴𝐷 → 𝐶𝐵𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssbri.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
2 | ssbr 5125 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐶𝐴𝐷 → 𝐶𝐵𝐷)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶𝐴𝐷 → 𝐶𝐵𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3892 class class class wbr 5081 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-v 3439 df-in 3899 df-ss 3909 df-br 5082 |
This theorem is referenced by: brel 5663 swoer 8559 swoord1 8560 swoord2 8561 ecopover 8641 endom 8800 brdom3 10334 brdom5 10335 brdom4 10336 fpwwe2lem12 10448 nqerf 10736 nqerrel 10738 isfull 17675 isfth 17679 fulloppc 17687 fthoppc 17688 fthsect 17690 fthinv 17691 fthmon 17692 fthepi 17693 ffthiso 17694 catcisolem 17874 psss 18347 efgrelex 19406 hlimadd 29604 hhsscms 29689 occllem 29714 nlelchi 30472 hmopidmchi 30562 fundmpss 33789 itg2gt0cn 35880 brresi2 35925 fullthinc2 46572 thincciso 46574 |
Copyright terms: Public domain | W3C validator |