![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssbri | Structured version Visualization version GIF version |
Description: Inference from a subclass relationship of binary relations. (Contributed by NM, 28-Mar-2007.) (Revised by Mario Carneiro, 8-Feb-2015.) |
Ref | Expression |
---|---|
ssbri.1 | ⊢ 𝐴 ⊆ 𝐵 |
Ref | Expression |
---|---|
ssbri | ⊢ (𝐶𝐴𝐷 → 𝐶𝐵𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssbri.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
2 | ssbr 5191 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐶𝐴𝐷 → 𝐶𝐵𝐷)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶𝐴𝐷 → 𝐶𝐵𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3962 class class class wbr 5147 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1776 df-clel 2813 df-ss 3979 df-br 5148 |
This theorem is referenced by: brel 5753 swoer 8774 swoord1 8775 swoord2 8776 ecopover 8859 endom 9017 brdom3 10565 brdom5 10566 brdom4 10567 fpwwe2lem12 10679 nqerf 10967 nqerrel 10969 isfull 17963 isfth 17967 fulloppc 17975 fthoppc 17976 fthsect 17978 fthinv 17979 fthmon 17980 fthepi 17981 ffthiso 17982 catcisolem 18163 psss 18637 efgrelex 19783 hlimadd 31221 hhsscms 31306 occllem 31331 nlelchi 32089 hmopidmchi 32179 fundmpss 35747 itg2gt0cn 37661 brresi2 37706 fullthinc2 48846 thincciso 48848 |
Copyright terms: Public domain | W3C validator |