| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssbri | Structured version Visualization version GIF version | ||
| Description: Inference from a subclass relationship of binary relations. (Contributed by NM, 28-Mar-2007.) (Revised by Mario Carneiro, 8-Feb-2015.) |
| Ref | Expression |
|---|---|
| ssbri.1 | ⊢ 𝐴 ⊆ 𝐵 |
| Ref | Expression |
|---|---|
| ssbri | ⊢ (𝐶𝐴𝐷 → 𝐶𝐵𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssbri.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
| 2 | ssbr 5137 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐶𝐴𝐷 → 𝐶𝐵𝐷)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶𝐴𝐷 → 𝐶𝐵𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3898 class class class wbr 5093 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-clel 2808 df-ss 3915 df-br 5094 |
| This theorem is referenced by: brel 5684 swoer 8659 swoord1 8660 swoord2 8661 ecopover 8751 endom 8908 brdom3 10426 brdom5 10427 brdom4 10428 fpwwe2lem12 10540 nqerf 10828 nqerrel 10830 isfull 17821 isfth 17825 fulloppc 17833 fthoppc 17834 fthsect 17836 fthinv 17837 fthmon 17838 fthepi 17839 ffthiso 17840 catcisolem 18019 psss 18488 efgrelex 19665 hlimadd 31175 hhsscms 31260 occllem 31285 nlelchi 32043 hmopidmchi 32133 fundmpss 35832 itg2gt0cn 37735 brresi2 37780 imasubc 49276 imasubc2 49277 fthcomf 49282 uptrlem1 49335 uptrlem3 49337 uptr2 49346 fucoppcfunc 49537 fullthinc2 49576 thincciso 49578 fulltermc2 49637 |
| Copyright terms: Public domain | W3C validator |