![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssbri | Structured version Visualization version GIF version |
Description: Inference from a subclass relationship of binary relations. (Contributed by NM, 28-Mar-2007.) (Revised by Mario Carneiro, 8-Feb-2015.) |
Ref | Expression |
---|---|
ssbri.1 | ⊢ 𝐴 ⊆ 𝐵 |
Ref | Expression |
---|---|
ssbri | ⊢ (𝐶𝐴𝐷 → 𝐶𝐵𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssbri.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
2 | ssbr 5193 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐶𝐴𝐷 → 𝐶𝐵𝐷)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶𝐴𝐷 → 𝐶𝐵𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3949 class class class wbr 5149 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3477 df-in 3956 df-ss 3966 df-br 5150 |
This theorem is referenced by: brel 5742 swoer 8733 swoord1 8734 swoord2 8735 ecopover 8815 endom 8975 brdom3 10523 brdom5 10524 brdom4 10525 fpwwe2lem12 10637 nqerf 10925 nqerrel 10927 isfull 17861 isfth 17865 fulloppc 17873 fthoppc 17874 fthsect 17876 fthinv 17877 fthmon 17878 fthepi 17879 ffthiso 17880 catcisolem 18060 psss 18533 efgrelex 19619 hlimadd 30446 hhsscms 30531 occllem 30556 nlelchi 31314 hmopidmchi 31404 fundmpss 34738 itg2gt0cn 36543 brresi2 36588 fullthinc2 47667 thincciso 47669 |
Copyright terms: Public domain | W3C validator |