| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssbri | Structured version Visualization version GIF version | ||
| Description: Inference from a subclass relationship of binary relations. (Contributed by NM, 28-Mar-2007.) (Revised by Mario Carneiro, 8-Feb-2015.) |
| Ref | Expression |
|---|---|
| ssbri.1 | ⊢ 𝐴 ⊆ 𝐵 |
| Ref | Expression |
|---|---|
| ssbri | ⊢ (𝐶𝐴𝐷 → 𝐶𝐵𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssbri.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
| 2 | ssbr 5139 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐶𝐴𝐷 → 𝐶𝐵𝐷)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶𝐴𝐷 → 𝐶𝐵𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3905 class class class wbr 5095 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-clel 2803 df-ss 3922 df-br 5096 |
| This theorem is referenced by: brel 5688 swoer 8663 swoord1 8664 swoord2 8665 ecopover 8755 endom 8911 brdom3 10441 brdom5 10442 brdom4 10443 fpwwe2lem12 10555 nqerf 10843 nqerrel 10845 isfull 17837 isfth 17841 fulloppc 17849 fthoppc 17850 fthsect 17852 fthinv 17853 fthmon 17854 fthepi 17855 ffthiso 17856 catcisolem 18035 psss 18504 efgrelex 19648 hlimadd 31155 hhsscms 31240 occllem 31265 nlelchi 32023 hmopidmchi 32113 fundmpss 35739 itg2gt0cn 37654 brresi2 37699 imasubc 49137 imasubc2 49138 fthcomf 49143 uptrlem1 49196 uptrlem3 49198 uptr2 49207 fucoppcfunc 49398 fullthinc2 49437 thincciso 49439 fulltermc2 49498 |
| Copyright terms: Public domain | W3C validator |