| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssbri | Structured version Visualization version GIF version | ||
| Description: Inference from a subclass relationship of binary relations. (Contributed by NM, 28-Mar-2007.) (Revised by Mario Carneiro, 8-Feb-2015.) |
| Ref | Expression |
|---|---|
| ssbri.1 | ⊢ 𝐴 ⊆ 𝐵 |
| Ref | Expression |
|---|---|
| ssbri | ⊢ (𝐶𝐴𝐷 → 𝐶𝐵𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssbri.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
| 2 | ssbr 5163 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐶𝐴𝐷 → 𝐶𝐵𝐷)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶𝐴𝐷 → 𝐶𝐵𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3926 class class class wbr 5119 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-clel 2809 df-ss 3943 df-br 5120 |
| This theorem is referenced by: brel 5719 swoer 8750 swoord1 8751 swoord2 8752 ecopover 8835 endom 8993 brdom3 10542 brdom5 10543 brdom4 10544 fpwwe2lem12 10656 nqerf 10944 nqerrel 10946 isfull 17925 isfth 17929 fulloppc 17937 fthoppc 17938 fthsect 17940 fthinv 17941 fthmon 17942 fthepi 17943 ffthiso 17944 catcisolem 18123 psss 18590 efgrelex 19732 hlimadd 31174 hhsscms 31259 occllem 31284 nlelchi 32042 hmopidmchi 32132 fundmpss 35784 itg2gt0cn 37699 brresi2 37744 imasubc 49091 imasubc2 49092 fthcomf 49097 fullthinc2 49337 thincciso 49339 fulltermc2 49397 |
| Copyright terms: Public domain | W3C validator |