Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssbri | Structured version Visualization version GIF version |
Description: Inference from a subclass relationship of binary relations. (Contributed by NM, 28-Mar-2007.) (Revised by Mario Carneiro, 8-Feb-2015.) |
Ref | Expression |
---|---|
ssbri.1 | ⊢ 𝐴 ⊆ 𝐵 |
Ref | Expression |
---|---|
ssbri | ⊢ (𝐶𝐴𝐷 → 𝐶𝐵𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssbri.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
2 | ssbr 5122 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐶𝐴𝐷 → 𝐶𝐵𝐷)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶𝐴𝐷 → 𝐶𝐵𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3891 class class class wbr 5078 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1544 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-v 3432 df-in 3898 df-ss 3908 df-br 5079 |
This theorem is referenced by: brel 5651 swoer 8502 swoord1 8503 swoord2 8504 ecopover 8584 endom 8738 brdom3 10268 brdom5 10269 brdom4 10270 fpwwe2lem12 10382 nqerf 10670 nqerrel 10672 isfull 17607 isfth 17611 fulloppc 17619 fthoppc 17620 fthsect 17622 fthinv 17623 fthmon 17624 fthepi 17625 ffthiso 17626 catcisolem 17806 psss 18279 efgrelex 19338 hlimadd 29534 hhsscms 29619 occllem 29644 nlelchi 30402 hmopidmchi 30492 fundmpss 33719 itg2gt0cn 35811 brresi2 35856 fullthinc2 46280 thincciso 46282 |
Copyright terms: Public domain | W3C validator |