| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssbri | Structured version Visualization version GIF version | ||
| Description: Inference from a subclass relationship of binary relations. (Contributed by NM, 28-Mar-2007.) (Revised by Mario Carneiro, 8-Feb-2015.) |
| Ref | Expression |
|---|---|
| ssbri.1 | ⊢ 𝐴 ⊆ 𝐵 |
| Ref | Expression |
|---|---|
| ssbri | ⊢ (𝐶𝐴𝐷 → 𝐶𝐵𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssbri.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
| 2 | ssbr 5151 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐶𝐴𝐷 → 𝐶𝐵𝐷)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶𝐴𝐷 → 𝐶𝐵𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3914 class class class wbr 5107 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-clel 2803 df-ss 3931 df-br 5108 |
| This theorem is referenced by: brel 5703 swoer 8702 swoord1 8703 swoord2 8704 ecopover 8794 endom 8950 brdom3 10481 brdom5 10482 brdom4 10483 fpwwe2lem12 10595 nqerf 10883 nqerrel 10885 isfull 17874 isfth 17878 fulloppc 17886 fthoppc 17887 fthsect 17889 fthinv 17890 fthmon 17891 fthepi 17892 ffthiso 17893 catcisolem 18072 psss 18539 efgrelex 19681 hlimadd 31122 hhsscms 31207 occllem 31232 nlelchi 31990 hmopidmchi 32080 fundmpss 35754 itg2gt0cn 37669 brresi2 37714 imasubc 49140 imasubc2 49141 fthcomf 49146 uptrlem1 49199 uptrlem3 49201 uptr2 49210 fucoppcfunc 49401 fullthinc2 49440 thincciso 49442 fulltermc2 49501 |
| Copyright terms: Public domain | W3C validator |