| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssbri | Structured version Visualization version GIF version | ||
| Description: Inference from a subclass relationship of binary relations. (Contributed by NM, 28-Mar-2007.) (Revised by Mario Carneiro, 8-Feb-2015.) |
| Ref | Expression |
|---|---|
| ssbri.1 | ⊢ 𝐴 ⊆ 𝐵 |
| Ref | Expression |
|---|---|
| ssbri | ⊢ (𝐶𝐴𝐷 → 𝐶𝐵𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssbri.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
| 2 | ssbr 5154 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐶𝐴𝐷 → 𝐶𝐵𝐷)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶𝐴𝐷 → 𝐶𝐵𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3917 class class class wbr 5110 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-clel 2804 df-ss 3934 df-br 5111 |
| This theorem is referenced by: brel 5706 swoer 8705 swoord1 8706 swoord2 8707 ecopover 8797 endom 8953 brdom3 10488 brdom5 10489 brdom4 10490 fpwwe2lem12 10602 nqerf 10890 nqerrel 10892 isfull 17881 isfth 17885 fulloppc 17893 fthoppc 17894 fthsect 17896 fthinv 17897 fthmon 17898 fthepi 17899 ffthiso 17900 catcisolem 18079 psss 18546 efgrelex 19688 hlimadd 31129 hhsscms 31214 occllem 31239 nlelchi 31997 hmopidmchi 32087 fundmpss 35761 itg2gt0cn 37676 brresi2 37721 imasubc 49144 imasubc2 49145 fthcomf 49150 uptrlem1 49203 uptrlem3 49205 uptr2 49214 fucoppcfunc 49405 fullthinc2 49444 thincciso 49446 fulltermc2 49505 |
| Copyright terms: Public domain | W3C validator |