| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssbri | Structured version Visualization version GIF version | ||
| Description: Inference from a subclass relationship of binary relations. (Contributed by NM, 28-Mar-2007.) (Revised by Mario Carneiro, 8-Feb-2015.) |
| Ref | Expression |
|---|---|
| ssbri.1 | ⊢ 𝐴 ⊆ 𝐵 |
| Ref | Expression |
|---|---|
| ssbri | ⊢ (𝐶𝐴𝐷 → 𝐶𝐵𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssbri.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
| 2 | ssbr 5135 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐶𝐴𝐷 → 𝐶𝐵𝐷)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶𝐴𝐷 → 𝐶𝐵𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3902 class class class wbr 5091 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-clel 2806 df-ss 3919 df-br 5092 |
| This theorem is referenced by: brel 5681 swoer 8653 swoord1 8654 swoord2 8655 ecopover 8745 endom 8901 brdom3 10416 brdom5 10417 brdom4 10418 fpwwe2lem12 10530 nqerf 10818 nqerrel 10820 isfull 17816 isfth 17820 fulloppc 17828 fthoppc 17829 fthsect 17831 fthinv 17832 fthmon 17833 fthepi 17834 ffthiso 17835 catcisolem 18014 psss 18483 efgrelex 19661 hlimadd 31168 hhsscms 31253 occllem 31278 nlelchi 32036 hmopidmchi 32126 fundmpss 35799 itg2gt0cn 37714 brresi2 37759 imasubc 49182 imasubc2 49183 fthcomf 49188 uptrlem1 49241 uptrlem3 49243 uptr2 49252 fucoppcfunc 49443 fullthinc2 49482 thincciso 49484 fulltermc2 49543 |
| Copyright terms: Public domain | W3C validator |