Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cbv1h | Structured version Visualization version GIF version |
Description: Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by NM, 11-May-1993.) (Proof shortened by Wolf Lammen, 13-May-2018.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cbv1h.1 | ⊢ (𝜑 → (𝜓 → ∀𝑦𝜓)) |
cbv1h.2 | ⊢ (𝜑 → (𝜒 → ∀𝑥𝜒)) |
cbv1h.3 | ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 → 𝜒))) |
Ref | Expression |
---|---|
cbv1h | ⊢ (∀𝑥∀𝑦𝜑 → (∀𝑥𝜓 → ∀𝑦𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfa1 2150 | . 2 ⊢ Ⅎ𝑥∀𝑥∀𝑦𝜑 | |
2 | nfa2 2172 | . 2 ⊢ Ⅎ𝑦∀𝑥∀𝑦𝜑 | |
3 | 2sp 2181 | . . . 4 ⊢ (∀𝑥∀𝑦𝜑 → 𝜑) | |
4 | cbv1h.1 | . . . 4 ⊢ (𝜑 → (𝜓 → ∀𝑦𝜓)) | |
5 | 3, 4 | syl 17 | . . 3 ⊢ (∀𝑥∀𝑦𝜑 → (𝜓 → ∀𝑦𝜓)) |
6 | 2, 5 | nf5d 2284 | . 2 ⊢ (∀𝑥∀𝑦𝜑 → Ⅎ𝑦𝜓) |
7 | cbv1h.2 | . . . 4 ⊢ (𝜑 → (𝜒 → ∀𝑥𝜒)) | |
8 | 3, 7 | syl 17 | . . 3 ⊢ (∀𝑥∀𝑦𝜑 → (𝜒 → ∀𝑥𝜒)) |
9 | 1, 8 | nf5d 2284 | . 2 ⊢ (∀𝑥∀𝑦𝜑 → Ⅎ𝑥𝜒) |
10 | cbv1h.3 | . . 3 ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 → 𝜒))) | |
11 | 3, 10 | syl 17 | . 2 ⊢ (∀𝑥∀𝑦𝜑 → (𝑥 = 𝑦 → (𝜓 → 𝜒))) |
12 | 1, 2, 6, 9, 11 | cbv1 2402 | 1 ⊢ (∀𝑥∀𝑦𝜑 → (∀𝑥𝜓 → ∀𝑦𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-10 2139 ax-11 2156 ax-12 2173 ax-13 2372 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ex 1784 df-nf 1788 |
This theorem is referenced by: cbv2h 2406 |
Copyright terms: Public domain | W3C validator |