MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbv1 Structured version   Visualization version   GIF version

Theorem cbv1 2403
Description: Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2373. See cbv1v 2336 with disjoint variable conditions, not depending on ax-13 2373. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 3-Oct-2016.) Format hypotheses to common style. (Revised by Wolf Lammen, 13-May-2018.) (New usage is discouraged.)
Hypotheses
Ref Expression
cbv1.1 𝑥𝜑
cbv1.2 𝑦𝜑
cbv1.3 (𝜑 → Ⅎ𝑦𝜓)
cbv1.4 (𝜑 → Ⅎ𝑥𝜒)
cbv1.5 (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))
Assertion
Ref Expression
cbv1 (𝜑 → (∀𝑥𝜓 → ∀𝑦𝜒))

Proof of Theorem cbv1
StepHypRef Expression
1 cbv1.2 . . . . 5 𝑦𝜑
2 cbv1.3 . . . . 5 (𝜑 → Ⅎ𝑦𝜓)
31, 2nfim1 2195 . . . 4 𝑦(𝜑𝜓)
4 cbv1.1 . . . . 5 𝑥𝜑
5 cbv1.4 . . . . 5 (𝜑 → Ⅎ𝑥𝜒)
64, 5nfim1 2195 . . . 4 𝑥(𝜑𝜒)
7 cbv1.5 . . . . . 6 (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))
87com12 32 . . . . 5 (𝑥 = 𝑦 → (𝜑 → (𝜓𝜒)))
98a2d 29 . . . 4 (𝑥 = 𝑦 → ((𝜑𝜓) → (𝜑𝜒)))
103, 6, 9cbv3 2398 . . 3 (∀𝑥(𝜑𝜓) → ∀𝑦(𝜑𝜒))
11419.21 2203 . . 3 (∀𝑥(𝜑𝜓) ↔ (𝜑 → ∀𝑥𝜓))
12119.21 2203 . . 3 (∀𝑦(𝜑𝜒) ↔ (𝜑 → ∀𝑦𝜒))
1310, 11, 123imtr3i 290 . 2 ((𝜑 → ∀𝑥𝜓) → (𝜑 → ∀𝑦𝜒))
1413pm2.86i 110 1 (𝜑 → (∀𝑥𝜓 → ∀𝑦𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1539  wnf 1789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-11 2157  ax-12 2174  ax-13 2373
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ex 1786  df-nf 1790
This theorem is referenced by:  cbv2  2404  cbv1h  2406
  Copyright terms: Public domain W3C validator