Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cbv1 | Structured version Visualization version GIF version |
Description: Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2373. See cbv1v 2336 with disjoint variable conditions, not depending on ax-13 2373. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 3-Oct-2016.) Format hypotheses to common style. (Revised by Wolf Lammen, 13-May-2018.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cbv1.1 | ⊢ Ⅎ𝑥𝜑 |
cbv1.2 | ⊢ Ⅎ𝑦𝜑 |
cbv1.3 | ⊢ (𝜑 → Ⅎ𝑦𝜓) |
cbv1.4 | ⊢ (𝜑 → Ⅎ𝑥𝜒) |
cbv1.5 | ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 → 𝜒))) |
Ref | Expression |
---|---|
cbv1 | ⊢ (𝜑 → (∀𝑥𝜓 → ∀𝑦𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbv1.2 | . . . . 5 ⊢ Ⅎ𝑦𝜑 | |
2 | cbv1.3 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑦𝜓) | |
3 | 1, 2 | nfim1 2195 | . . . 4 ⊢ Ⅎ𝑦(𝜑 → 𝜓) |
4 | cbv1.1 | . . . . 5 ⊢ Ⅎ𝑥𝜑 | |
5 | cbv1.4 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
6 | 4, 5 | nfim1 2195 | . . . 4 ⊢ Ⅎ𝑥(𝜑 → 𝜒) |
7 | cbv1.5 | . . . . . 6 ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 → 𝜒))) | |
8 | 7 | com12 32 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 → (𝜓 → 𝜒))) |
9 | 8 | a2d 29 | . . . 4 ⊢ (𝑥 = 𝑦 → ((𝜑 → 𝜓) → (𝜑 → 𝜒))) |
10 | 3, 6, 9 | cbv3 2398 | . . 3 ⊢ (∀𝑥(𝜑 → 𝜓) → ∀𝑦(𝜑 → 𝜒)) |
11 | 4 | 19.21 2203 | . . 3 ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥𝜓)) |
12 | 1 | 19.21 2203 | . . 3 ⊢ (∀𝑦(𝜑 → 𝜒) ↔ (𝜑 → ∀𝑦𝜒)) |
13 | 10, 11, 12 | 3imtr3i 290 | . 2 ⊢ ((𝜑 → ∀𝑥𝜓) → (𝜑 → ∀𝑦𝜒)) |
14 | 13 | pm2.86i 110 | 1 ⊢ (𝜑 → (∀𝑥𝜓 → ∀𝑦𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1539 Ⅎwnf 1789 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-11 2157 ax-12 2174 ax-13 2373 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ex 1786 df-nf 1790 |
This theorem is referenced by: cbv2 2404 cbv1h 2406 |
Copyright terms: Public domain | W3C validator |