| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbval2 | Structured version Visualization version GIF version | ||
| Description: Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2377. Use the weaker cbval2v 2345 if possible. (Contributed by NM, 22-Dec-2003.) (Revised by Mario Carneiro, 6-Oct-2016.) (Proof shortened by Wolf Lammen, 11-Sep-2023.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| cbval2.1 | ⊢ Ⅎ𝑧𝜑 |
| cbval2.2 | ⊢ Ⅎ𝑤𝜑 |
| cbval2.3 | ⊢ Ⅎ𝑥𝜓 |
| cbval2.4 | ⊢ Ⅎ𝑦𝜓 |
| cbval2.5 | ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbval2 | ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑧∀𝑤𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbval2.1 | . . 3 ⊢ Ⅎ𝑧𝜑 | |
| 2 | 1 | nfal 2323 | . 2 ⊢ Ⅎ𝑧∀𝑦𝜑 |
| 3 | cbval2.3 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 4 | 3 | nfal 2323 | . 2 ⊢ Ⅎ𝑥∀𝑤𝜓 |
| 5 | nfv 1914 | . . 3 ⊢ Ⅎ𝑦 𝑥 = 𝑧 | |
| 6 | nfv 1914 | . . 3 ⊢ Ⅎ𝑤 𝑥 = 𝑧 | |
| 7 | cbval2.2 | . . . 4 ⊢ Ⅎ𝑤𝜑 | |
| 8 | 7 | a1i 11 | . . 3 ⊢ (𝑥 = 𝑧 → Ⅎ𝑤𝜑) |
| 9 | cbval2.4 | . . . 4 ⊢ Ⅎ𝑦𝜓 | |
| 10 | 9 | a1i 11 | . . 3 ⊢ (𝑥 = 𝑧 → Ⅎ𝑦𝜓) |
| 11 | cbval2.5 | . . . 4 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝜑 ↔ 𝜓)) | |
| 12 | 11 | ex 412 | . . 3 ⊢ (𝑥 = 𝑧 → (𝑦 = 𝑤 → (𝜑 ↔ 𝜓))) |
| 13 | 5, 6, 8, 10, 12 | cbv2 2408 | . 2 ⊢ (𝑥 = 𝑧 → (∀𝑦𝜑 ↔ ∀𝑤𝜓)) |
| 14 | 2, 4, 13 | cbval 2403 | 1 ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑧∀𝑤𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-10 2141 ax-11 2157 ax-12 2177 ax-13 2377 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: cbvex2 2417 |
| Copyright terms: Public domain | W3C validator |