Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbval2 Structured version   Visualization version   GIF version

Theorem cbval2 2429
 Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 22-Dec-2003.) (Revised by Mario Carneiro, 6-Oct-2016.) (Proof shortened by Wolf Lammen, 22-Apr-2018.)
Hypotheses
Ref Expression
cbval2.1 𝑧𝜑
cbval2.2 𝑤𝜑
cbval2.3 𝑥𝜓
cbval2.4 𝑦𝜓
cbval2.5 ((𝑥 = 𝑧𝑦 = 𝑤) → (𝜑𝜓))
Assertion
Ref Expression
cbval2 (∀𝑥𝑦𝜑 ↔ ∀𝑧𝑤𝜓)
Distinct variable groups:   𝑥,𝑦   𝑦,𝑧   𝑥,𝑤   𝑧,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)   𝜓(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem cbval2
StepHypRef Expression
1 cbval2.1 . . 3 𝑧𝜑
21nfal 2355 . 2 𝑧𝑦𝜑
3 cbval2.3 . . 3 𝑥𝜓
43nfal 2355 . 2 𝑥𝑤𝜓
5 nfv 2013 . . . . . 6 𝑤 𝑥 = 𝑧
6 cbval2.2 . . . . . 6 𝑤𝜑
75, 6nfim 1999 . . . . 5 𝑤(𝑥 = 𝑧𝜑)
8 nfv 2013 . . . . . 6 𝑦 𝑥 = 𝑧
9 cbval2.4 . . . . . 6 𝑦𝜓
108, 9nfim 1999 . . . . 5 𝑦(𝑥 = 𝑧𝜓)
11 cbval2.5 . . . . . . 7 ((𝑥 = 𝑧𝑦 = 𝑤) → (𝜑𝜓))
1211expcom 404 . . . . . 6 (𝑦 = 𝑤 → (𝑥 = 𝑧 → (𝜑𝜓)))
1312pm5.74d 265 . . . . 5 (𝑦 = 𝑤 → ((𝑥 = 𝑧𝜑) ↔ (𝑥 = 𝑧𝜓)))
147, 10, 13cbval 2423 . . . 4 (∀𝑦(𝑥 = 𝑧𝜑) ↔ ∀𝑤(𝑥 = 𝑧𝜓))
15 19.21v 2038 . . . 4 (∀𝑦(𝑥 = 𝑧𝜑) ↔ (𝑥 = 𝑧 → ∀𝑦𝜑))
16 19.21v 2038 . . . 4 (∀𝑤(𝑥 = 𝑧𝜓) ↔ (𝑥 = 𝑧 → ∀𝑤𝜓))
1714, 15, 163bitr3i 293 . . 3 ((𝑥 = 𝑧 → ∀𝑦𝜑) ↔ (𝑥 = 𝑧 → ∀𝑤𝜓))
1817pm5.74ri 264 . 2 (𝑥 = 𝑧 → (∀𝑦𝜑 ↔ ∀𝑤𝜓))
192, 4, 18cbval 2423 1 (∀𝑥𝑦𝜑 ↔ ∀𝑧𝑤𝜓)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 198   ∧ wa 386  ∀wal 1654  Ⅎwnf 1882 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389 This theorem depends on definitions:  df-bi 199  df-an 387  df-ex 1879  df-nf 1883 This theorem is referenced by:  cbvex2  2430  eqrelf  34567
 Copyright terms: Public domain W3C validator