MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbval Structured version   Visualization version   GIF version

Theorem cbval 2398
Description: Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2372. Check out cbvalw 2038, cbvalvw 2039, cbvalv1 2338 for versions requiring fewer axioms. (Contributed by NM, 13-May-1993.) (Revised by Mario Carneiro, 3-Oct-2016.) (New usage is discouraged.)
Hypotheses
Ref Expression
cbval.1 𝑦𝜑
cbval.2 𝑥𝜓
cbval.3 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbval (∀𝑥𝜑 ↔ ∀𝑦𝜓)

Proof of Theorem cbval
StepHypRef Expression
1 cbval.1 . . 3 𝑦𝜑
2 cbval.2 . . 3 𝑥𝜓
3 cbval.3 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
43biimpd 228 . . 3 (𝑥 = 𝑦 → (𝜑𝜓))
51, 2, 4cbv3 2397 . 2 (∀𝑥𝜑 → ∀𝑦𝜓)
63biimprd 247 . . . 4 (𝑥 = 𝑦 → (𝜓𝜑))
76equcoms 2023 . . 3 (𝑦 = 𝑥 → (𝜓𝜑))
82, 1, 7cbv3 2397 . 2 (∀𝑦𝜓 → ∀𝑥𝜑)
95, 8impbii 208 1 (∀𝑥𝜑 ↔ ∀𝑦𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537  wnf 1786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-11 2154  ax-12 2171  ax-13 2372
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-nf 1787
This theorem is referenced by:  cbvex  2399  cbvalv  2400  cbval2  2411  sb8  2521
  Copyright terms: Public domain W3C validator