Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cbvaldw | Structured version Visualization version GIF version |
Description: Deduction used to change bound variables, using implicit substitution. Version of cbvald 2407 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by NM, 2-Jan-2002.) (Revised by Gino Giotto, 10-Jan-2024.) |
Ref | Expression |
---|---|
cbvaldw.1 | ⊢ Ⅎ𝑦𝜑 |
cbvaldw.2 | ⊢ (𝜑 → Ⅎ𝑦𝜓) |
cbvaldw.3 | ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) |
Ref | Expression |
---|---|
cbvaldw | ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1918 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | cbvaldw.1 | . 2 ⊢ Ⅎ𝑦𝜑 | |
3 | cbvaldw.2 | . 2 ⊢ (𝜑 → Ⅎ𝑦𝜓) | |
4 | nfvd 1919 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
5 | cbvaldw.3 | . 2 ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) | |
6 | 1, 2, 3, 4, 5 | cbv2w 2336 | 1 ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 Ⅎwnf 1787 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-11 2156 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ex 1784 df-nf 1788 |
This theorem is referenced by: cbvexdw 2338 |
Copyright terms: Public domain | W3C validator |