MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvaldw Structured version   Visualization version   GIF version

Theorem cbvaldw 2335
Description: Deduction used to change bound variables, using implicit substitution. Version of cbvald 2407 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by NM, 2-Jan-2002.) (Revised by Gino Giotto, 10-Jan-2024.)
Hypotheses
Ref Expression
cbvaldw.1 𝑦𝜑
cbvaldw.2 (𝜑 → Ⅎ𝑦𝜓)
cbvaldw.3 (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))
Assertion
Ref Expression
cbvaldw (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒))
Distinct variable groups:   𝜑,𝑥   𝜒,𝑥   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑦)   𝜓(𝑥,𝑦)   𝜒(𝑦)

Proof of Theorem cbvaldw
StepHypRef Expression
1 nfv 1917 . 2 𝑥𝜑
2 cbvaldw.1 . 2 𝑦𝜑
3 cbvaldw.2 . 2 (𝜑 → Ⅎ𝑦𝜓)
4 nfvd 1918 . 2 (𝜑 → Ⅎ𝑥𝜒)
5 cbvaldw.3 . 2 (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))
61, 2, 3, 4, 5cbv2w 2334 1 (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537  wnf 1786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-11 2154  ax-12 2171
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ex 1783  df-nf 1787
This theorem is referenced by:  cbvexdw  2336
  Copyright terms: Public domain W3C validator