Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cbv2w | Structured version Visualization version GIF version |
Description: Rule used to change bound variables, using implicit substitution. Version of cbv2 2403 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by NM, 5-Aug-1993.) (Revised by Gino Giotto, 10-Jan-2024.) |
Ref | Expression |
---|---|
cbv2w.1 | ⊢ Ⅎ𝑥𝜑 |
cbv2w.2 | ⊢ Ⅎ𝑦𝜑 |
cbv2w.3 | ⊢ (𝜑 → Ⅎ𝑦𝜓) |
cbv2w.4 | ⊢ (𝜑 → Ⅎ𝑥𝜒) |
cbv2w.5 | ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) |
Ref | Expression |
---|---|
cbv2w | ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbv2w.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | cbv2w.2 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
3 | cbv2w.3 | . . 3 ⊢ (𝜑 → Ⅎ𝑦𝜓) | |
4 | cbv2w.4 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
5 | cbv2w.5 | . . . 4 ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) | |
6 | biimp 214 | . . . 4 ⊢ ((𝜓 ↔ 𝜒) → (𝜓 → 𝜒)) | |
7 | 5, 6 | syl6 35 | . . 3 ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 → 𝜒))) |
8 | 1, 2, 3, 4, 7 | cbv1v 2335 | . 2 ⊢ (𝜑 → (∀𝑥𝜓 → ∀𝑦𝜒)) |
9 | equcomi 2021 | . . . 4 ⊢ (𝑦 = 𝑥 → 𝑥 = 𝑦) | |
10 | biimpr 219 | . . . 4 ⊢ ((𝜓 ↔ 𝜒) → (𝜒 → 𝜓)) | |
11 | 9, 5, 10 | syl56 36 | . . 3 ⊢ (𝜑 → (𝑦 = 𝑥 → (𝜒 → 𝜓))) |
12 | 2, 1, 4, 3, 11 | cbv1v 2335 | . 2 ⊢ (𝜑 → (∀𝑦𝜒 → ∀𝑥𝜓)) |
13 | 8, 12 | impbid 211 | 1 ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 Ⅎwnf 1787 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-11 2156 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ex 1784 df-nf 1788 |
This theorem is referenced by: cbvaldw 2337 cbval2v 2342 cbveud 35470 |
Copyright terms: Public domain | W3C validator |