| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbv2w | Structured version Visualization version GIF version | ||
| Description: Rule used to change bound variables, using implicit substitution. Version of cbv2 2408 with a disjoint variable condition, which does not require ax-13 2377. (Contributed by NM, 5-Aug-1993.) Avoid ax-13 2377. (Revised by GG, 10-Jan-2024.) |
| Ref | Expression |
|---|---|
| cbv2w.1 | ⊢ Ⅎ𝑥𝜑 |
| cbv2w.2 | ⊢ Ⅎ𝑦𝜑 |
| cbv2w.3 | ⊢ (𝜑 → Ⅎ𝑦𝜓) |
| cbv2w.4 | ⊢ (𝜑 → Ⅎ𝑥𝜒) |
| cbv2w.5 | ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) |
| Ref | Expression |
|---|---|
| cbv2w | ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbv2w.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | cbv2w.2 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
| 3 | cbv2w.3 | . . 3 ⊢ (𝜑 → Ⅎ𝑦𝜓) | |
| 4 | cbv2w.4 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
| 5 | cbv2w.5 | . . . 4 ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) | |
| 6 | biimp 215 | . . . 4 ⊢ ((𝜓 ↔ 𝜒) → (𝜓 → 𝜒)) | |
| 7 | 5, 6 | syl6 35 | . . 3 ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 → 𝜒))) |
| 8 | 1, 2, 3, 4, 7 | cbv1v 2338 | . 2 ⊢ (𝜑 → (∀𝑥𝜓 → ∀𝑦𝜒)) |
| 9 | equcomi 2016 | . . . 4 ⊢ (𝑦 = 𝑥 → 𝑥 = 𝑦) | |
| 10 | biimpr 220 | . . . 4 ⊢ ((𝜓 ↔ 𝜒) → (𝜒 → 𝜓)) | |
| 11 | 9, 5, 10 | syl56 36 | . . 3 ⊢ (𝜑 → (𝑦 = 𝑥 → (𝜒 → 𝜓))) |
| 12 | 2, 1, 4, 3, 11 | cbv1v 2338 | . 2 ⊢ (𝜑 → (∀𝑦𝜒 → ∀𝑥𝜓)) |
| 13 | 8, 12 | impbid 212 | 1 ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-11 2157 ax-12 2177 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: cbvaldw 2340 cbval2v 2345 cbvexeqsetf 3495 cbveud 37373 wl-issetft 37583 |
| Copyright terms: Public domain | W3C validator |