Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cbvex1v Structured version   Visualization version   GIF version

Theorem cbvex1v 35050
Description: Rule used to change bound variables, using implicit substitution. (Contributed by BTernaryTau, 31-Jul-2025.)
Hypotheses
Ref Expression
cbvex1v.1 𝑥𝜑
cbvex1v.2 𝑦𝜑
cbvex1v.3 (𝜑 → Ⅎ𝑦𝜓)
cbvex1v.4 (𝜑 → Ⅎ𝑥𝜒)
cbvex1v.5 (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))
Assertion
Ref Expression
cbvex1v (𝜑 → (∃𝑥𝜓 → ∃𝑦𝜒))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦)

Proof of Theorem cbvex1v
StepHypRef Expression
1 cbvex1v.2 . . . 4 𝑦𝜑
2 cbvex1v.1 . . . 4 𝑥𝜑
3 cbvex1v.4 . . . . 5 (𝜑 → Ⅎ𝑥𝜒)
43nfnd 1857 . . . 4 (𝜑 → Ⅎ𝑥 ¬ 𝜒)
5 cbvex1v.3 . . . . 5 (𝜑 → Ⅎ𝑦𝜓)
65nfnd 1857 . . . 4 (𝜑 → Ⅎ𝑦 ¬ 𝜓)
7 equcomi 2016 . . . . 5 (𝑦 = 𝑥𝑥 = 𝑦)
8 cbvex1v.5 . . . . 5 (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))
9 con3 153 . . . . 5 ((𝜓𝜒) → (¬ 𝜒 → ¬ 𝜓))
107, 8, 9syl56 36 . . . 4 (𝜑 → (𝑦 = 𝑥 → (¬ 𝜒 → ¬ 𝜓)))
111, 2, 4, 6, 10cbv1v 2342 . . 3 (𝜑 → (∀𝑦 ¬ 𝜒 → ∀𝑥 ¬ 𝜓))
1211con3d 152 . 2 (𝜑 → (¬ ∀𝑥 ¬ 𝜓 → ¬ ∀𝑦 ¬ 𝜒))
13 df-ex 1778 . 2 (∃𝑥𝜓 ↔ ¬ ∀𝑥 ¬ 𝜓)
14 df-ex 1778 . 2 (∃𝑦𝜒 ↔ ¬ ∀𝑦 ¬ 𝜒)
1512, 13, 143imtr4g 296 1 (𝜑 → (∃𝑥𝜓 → ∃𝑦𝜒))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1535  wex 1777  wnf 1781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-11 2158  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-ex 1778  df-nf 1782
This theorem is referenced by:  dvelimexcased  35053
  Copyright terms: Public domain W3C validator