![]() |
Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cbvex1v | Structured version Visualization version GIF version |
Description: Rule used to change bound variables, using implicit substitution. (Contributed by BTernaryTau, 31-Jul-2025.) |
Ref | Expression |
---|---|
cbvex1v.1 | ⊢ Ⅎ𝑥𝜑 |
cbvex1v.2 | ⊢ Ⅎ𝑦𝜑 |
cbvex1v.3 | ⊢ (𝜑 → Ⅎ𝑦𝜓) |
cbvex1v.4 | ⊢ (𝜑 → Ⅎ𝑥𝜒) |
cbvex1v.5 | ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 → 𝜒))) |
Ref | Expression |
---|---|
cbvex1v | ⊢ (𝜑 → (∃𝑥𝜓 → ∃𝑦𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvex1v.2 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
2 | cbvex1v.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
3 | cbvex1v.4 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
4 | 3 | nfnd 1857 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 ¬ 𝜒) |
5 | cbvex1v.3 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑦𝜓) | |
6 | 5 | nfnd 1857 | . . . 4 ⊢ (𝜑 → Ⅎ𝑦 ¬ 𝜓) |
7 | equcomi 2016 | . . . . 5 ⊢ (𝑦 = 𝑥 → 𝑥 = 𝑦) | |
8 | cbvex1v.5 | . . . . 5 ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 → 𝜒))) | |
9 | con3 153 | . . . . 5 ⊢ ((𝜓 → 𝜒) → (¬ 𝜒 → ¬ 𝜓)) | |
10 | 7, 8, 9 | syl56 36 | . . . 4 ⊢ (𝜑 → (𝑦 = 𝑥 → (¬ 𝜒 → ¬ 𝜓))) |
11 | 1, 2, 4, 6, 10 | cbv1v 2342 | . . 3 ⊢ (𝜑 → (∀𝑦 ¬ 𝜒 → ∀𝑥 ¬ 𝜓)) |
12 | 11 | con3d 152 | . 2 ⊢ (𝜑 → (¬ ∀𝑥 ¬ 𝜓 → ¬ ∀𝑦 ¬ 𝜒)) |
13 | df-ex 1778 | . 2 ⊢ (∃𝑥𝜓 ↔ ¬ ∀𝑥 ¬ 𝜓) | |
14 | df-ex 1778 | . 2 ⊢ (∃𝑦𝜒 ↔ ¬ ∀𝑦 ¬ 𝜒) | |
15 | 12, 13, 14 | 3imtr4g 296 | 1 ⊢ (𝜑 → (∃𝑥𝜓 → ∃𝑦𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1535 ∃wex 1777 Ⅎwnf 1781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-11 2158 ax-12 2178 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-ex 1778 df-nf 1782 |
This theorem is referenced by: dvelimexcased 35053 |
Copyright terms: Public domain | W3C validator |