| Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cbvex1v | Structured version Visualization version GIF version | ||
| Description: Rule used to change bound variables, using implicit substitution. (Contributed by BTernaryTau, 31-Jul-2025.) |
| Ref | Expression |
|---|---|
| cbvex1v.1 | ⊢ Ⅎ𝑥𝜑 |
| cbvex1v.2 | ⊢ Ⅎ𝑦𝜑 |
| cbvex1v.3 | ⊢ (𝜑 → Ⅎ𝑦𝜓) |
| cbvex1v.4 | ⊢ (𝜑 → Ⅎ𝑥𝜒) |
| cbvex1v.5 | ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 → 𝜒))) |
| Ref | Expression |
|---|---|
| cbvex1v | ⊢ (𝜑 → (∃𝑥𝜓 → ∃𝑦𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvex1v.2 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
| 2 | cbvex1v.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 3 | cbvex1v.4 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
| 4 | 3 | nfnd 1857 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 ¬ 𝜒) |
| 5 | cbvex1v.3 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑦𝜓) | |
| 6 | 5 | nfnd 1857 | . . . 4 ⊢ (𝜑 → Ⅎ𝑦 ¬ 𝜓) |
| 7 | equcomi 2015 | . . . . 5 ⊢ (𝑦 = 𝑥 → 𝑥 = 𝑦) | |
| 8 | cbvex1v.5 | . . . . 5 ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 → 𝜒))) | |
| 9 | con3 153 | . . . . 5 ⊢ ((𝜓 → 𝜒) → (¬ 𝜒 → ¬ 𝜓)) | |
| 10 | 7, 8, 9 | syl56 36 | . . . 4 ⊢ (𝜑 → (𝑦 = 𝑥 → (¬ 𝜒 → ¬ 𝜓))) |
| 11 | 1, 2, 4, 6, 10 | cbv1v 2337 | . . 3 ⊢ (𝜑 → (∀𝑦 ¬ 𝜒 → ∀𝑥 ¬ 𝜓)) |
| 12 | 11 | con3d 152 | . 2 ⊢ (𝜑 → (¬ ∀𝑥 ¬ 𝜓 → ¬ ∀𝑦 ¬ 𝜒)) |
| 13 | df-ex 1779 | . 2 ⊢ (∃𝑥𝜓 ↔ ¬ ∀𝑥 ¬ 𝜓) | |
| 14 | df-ex 1779 | . 2 ⊢ (∃𝑦𝜒 ↔ ¬ ∀𝑦 ¬ 𝜒) | |
| 15 | 12, 13, 14 | 3imtr4g 296 | 1 ⊢ (𝜑 → (∃𝑥𝜓 → ∃𝑦𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1537 ∃wex 1778 Ⅎwnf 1782 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-11 2156 ax-12 2176 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1779 df-nf 1783 |
| This theorem is referenced by: dvelimexcased 35092 |
| Copyright terms: Public domain | W3C validator |