Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cbv1v | Structured version Visualization version GIF version |
Description: Rule used to change bound variables, using implicit substitution. Version of cbv1 2402 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by NM, 5-Aug-1993.) (Revised by BJ, 16-Jun-2019.) |
Ref | Expression |
---|---|
cbv1v.1 | ⊢ Ⅎ𝑥𝜑 |
cbv1v.2 | ⊢ Ⅎ𝑦𝜑 |
cbv1v.3 | ⊢ (𝜑 → Ⅎ𝑦𝜓) |
cbv1v.4 | ⊢ (𝜑 → Ⅎ𝑥𝜒) |
cbv1v.5 | ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 → 𝜒))) |
Ref | Expression |
---|---|
cbv1v | ⊢ (𝜑 → (∀𝑥𝜓 → ∀𝑦𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbv1v.2 | . . . . 5 ⊢ Ⅎ𝑦𝜑 | |
2 | cbv1v.3 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑦𝜓) | |
3 | 1, 2 | nfim1 2195 | . . . 4 ⊢ Ⅎ𝑦(𝜑 → 𝜓) |
4 | cbv1v.1 | . . . . 5 ⊢ Ⅎ𝑥𝜑 | |
5 | cbv1v.4 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
6 | 4, 5 | nfim1 2195 | . . . 4 ⊢ Ⅎ𝑥(𝜑 → 𝜒) |
7 | cbv1v.5 | . . . . . 6 ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 → 𝜒))) | |
8 | 7 | com12 32 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 → (𝜓 → 𝜒))) |
9 | 8 | a2d 29 | . . . 4 ⊢ (𝑥 = 𝑦 → ((𝜑 → 𝜓) → (𝜑 → 𝜒))) |
10 | 3, 6, 9 | cbv3v 2334 | . . 3 ⊢ (∀𝑥(𝜑 → 𝜓) → ∀𝑦(𝜑 → 𝜒)) |
11 | 4 | 19.21 2203 | . . 3 ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥𝜓)) |
12 | 1 | 19.21 2203 | . . 3 ⊢ (∀𝑦(𝜑 → 𝜒) ↔ (𝜑 → ∀𝑦𝜒)) |
13 | 10, 11, 12 | 3imtr3i 290 | . 2 ⊢ ((𝜑 → ∀𝑥𝜓) → (𝜑 → ∀𝑦𝜒)) |
14 | 13 | pm2.86i 110 | 1 ⊢ (𝜑 → (∀𝑥𝜓 → ∀𝑦𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 Ⅎwnf 1787 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-11 2156 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-or 844 df-ex 1784 df-nf 1788 |
This theorem is referenced by: cbv2w 2336 vtoclgft 3482 bj-cbv1hv 34905 |
Copyright terms: Public domain | W3C validator |