Users' Mathboxes Mathbox for Gino Giotto < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cbvriotadavw Structured version   Visualization version   GIF version

Theorem cbvriotadavw 36249
Description: Change bound variable in a restricted description binder. Deduction form. (Contributed by GG, 14-Aug-2025.)
Hypothesis
Ref Expression
cbvriotadavw.1 ((𝜑𝑥 = 𝑦) → (𝜓𝜒))
Assertion
Ref Expression
cbvriotadavw (𝜑 → (𝑥𝐴 𝜓) = (𝑦𝐴 𝜒))
Distinct variable groups:   𝜑,𝑥,𝑦   𝜓,𝑦   𝜒,𝑥   𝑥,𝐴,𝑦
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑦)

Proof of Theorem cbvriotadavw
StepHypRef Expression
1 eleq1w 2823 . . . . 5 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
21adantl 481 . . . 4 ((𝜑𝑥 = 𝑦) → (𝑥𝐴𝑦𝐴))
3 cbvriotadavw.1 . . . 4 ((𝜑𝑥 = 𝑦) → (𝜓𝜒))
42, 3anbi12d 632 . . 3 ((𝜑𝑥 = 𝑦) → ((𝑥𝐴𝜓) ↔ (𝑦𝐴𝜒)))
54cbviotadavw 36248 . 2 (𝜑 → (℩𝑥(𝑥𝐴𝜓)) = (℩𝑦(𝑦𝐴𝜒)))
6 df-riota 7386 . 2 (𝑥𝐴 𝜓) = (℩𝑥(𝑥𝐴𝜓))
7 df-riota 7386 . 2 (𝑦𝐴 𝜒) = (℩𝑦(𝑦𝐴𝜒))
85, 6, 73eqtr4g 2801 1 (𝜑 → (𝑥𝐴 𝜓) = (𝑦𝐴 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  cio 6510  crio 7385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2728  df-clel 2815  df-v 3481  df-ss 3967  df-uni 4906  df-iota 6512  df-riota 7386
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator