MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm5.74ri Structured version   Visualization version   GIF version

Theorem pm5.74ri 271
Description: Distribution of implication over biconditional (reverse inference form). (Contributed by NM, 1-Aug-1994.)
Hypothesis
Ref Expression
pm5.74ri.1 ((𝜑𝜓) ↔ (𝜑𝜒))
Assertion
Ref Expression
pm5.74ri (𝜑 → (𝜓𝜒))

Proof of Theorem pm5.74ri
StepHypRef Expression
1 pm5.74ri.1 . 2 ((𝜑𝜓) ↔ (𝜑𝜒))
2 pm5.74 269 . 2 ((𝜑 → (𝜓𝜒)) ↔ ((𝜑𝜓) ↔ (𝜑𝜒)))
31, 2mpbir 230 1 (𝜑 → (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206
This theorem is referenced by:  bitrd  278  bibi2d  343  tbt  370  cbvaldvaw  2041  sbiedvw  2096  sbiedw  2310  cbval2vOLD  2341  sbied  2507  sbco2d  2516  2mos  2651  cbvraldva2  3392  axgroth6  10584  isprm2  16387  ufileu  23070
  Copyright terms: Public domain W3C validator