|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > pm5.74ri | Structured version Visualization version GIF version | ||
| Description: Distribution of implication over biconditional (reverse inference form). (Contributed by NM, 1-Aug-1994.) | 
| Ref | Expression | 
|---|---|
| pm5.74ri.1 | ⊢ ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒)) | 
| Ref | Expression | 
|---|---|
| pm5.74ri | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pm5.74ri.1 | . 2 ⊢ ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒)) | |
| 2 | pm5.74 270 | . 2 ⊢ ((𝜑 → (𝜓 ↔ 𝜒)) ↔ ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒))) | |
| 3 | 1, 2 | mpbir 231 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 | 
| This theorem is referenced by: bitrd 279 bibi2d 342 tbt 369 cbvaldvaw 2036 sbiedvw 2094 sbiedw 2315 sbied 2507 sbco2d 2516 2mosOLD 2649 cbvraldva 3238 cbvraldva2 3347 axgroth6 10869 isprm2 16720 ufileu 23928 | 
| Copyright terms: Public domain | W3C validator |