| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm5.74ri | Structured version Visualization version GIF version | ||
| Description: Distribution of implication over biconditional (reverse inference form). (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| pm5.74ri.1 | ⊢ ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒)) |
| Ref | Expression |
|---|---|
| pm5.74ri | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.74ri.1 | . 2 ⊢ ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒)) | |
| 2 | pm5.74 270 | . 2 ⊢ ((𝜑 → (𝜓 ↔ 𝜒)) ↔ ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒))) | |
| 3 | 1, 2 | mpbir 231 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: bitrd 279 bibi2d 342 tbt 369 cbvaldvaw 2038 sbiedvw 2096 sbiedw 2317 sbied 2508 sbco2d 2517 2mosOLD 2650 cbvraldva 3226 cbvraldva2 3331 axgroth6 10847 isprm2 16706 ufileu 23862 |
| Copyright terms: Public domain | W3C validator |