Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > axtgcont | Structured version Visualization version GIF version |
Description: Axiom of Continuity. Axiom A11 of [Schwabhauser] p. 13. For more information see axtgcont1 26829. (Contributed by Thierry Arnoux, 16-Mar-2019.) |
Ref | Expression |
---|---|
axtrkg.p | ⊢ 𝑃 = (Base‘𝐺) |
axtrkg.d | ⊢ − = (dist‘𝐺) |
axtrkg.i | ⊢ 𝐼 = (Itv‘𝐺) |
axtrkg.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
axtgcont.1 | ⊢ (𝜑 → 𝑆 ⊆ 𝑃) |
axtgcont.2 | ⊢ (𝜑 → 𝑇 ⊆ 𝑃) |
axtgcont.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
axtgcont.4 | ⊢ ((𝜑 ∧ 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑇) → 𝑢 ∈ (𝐴𝐼𝑣)) |
Ref | Expression |
---|---|
axtgcont | ⊢ (𝜑 → ∃𝑏 ∈ 𝑃 ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 𝑏 ∈ (𝑥𝐼𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axtgcont.3 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
2 | axtgcont.4 | . . . . 5 ⊢ ((𝜑 ∧ 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑇) → 𝑢 ∈ (𝐴𝐼𝑣)) | |
3 | 2 | 3expb 1119 | . . . 4 ⊢ ((𝜑 ∧ (𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑇)) → 𝑢 ∈ (𝐴𝐼𝑣)) |
4 | 3 | ralrimivva 3123 | . . 3 ⊢ (𝜑 → ∀𝑢 ∈ 𝑆 ∀𝑣 ∈ 𝑇 𝑢 ∈ (𝐴𝐼𝑣)) |
5 | simplr 766 | . . . . . . 7 ⊢ (((𝑎 = 𝐴 ∧ 𝑥 = 𝑢) ∧ 𝑦 = 𝑣) → 𝑥 = 𝑢) | |
6 | simpll 764 | . . . . . . . 8 ⊢ (((𝑎 = 𝐴 ∧ 𝑥 = 𝑢) ∧ 𝑦 = 𝑣) → 𝑎 = 𝐴) | |
7 | simpr 485 | . . . . . . . 8 ⊢ (((𝑎 = 𝐴 ∧ 𝑥 = 𝑢) ∧ 𝑦 = 𝑣) → 𝑦 = 𝑣) | |
8 | 6, 7 | oveq12d 7293 | . . . . . . 7 ⊢ (((𝑎 = 𝐴 ∧ 𝑥 = 𝑢) ∧ 𝑦 = 𝑣) → (𝑎𝐼𝑦) = (𝐴𝐼𝑣)) |
9 | 5, 8 | eleq12d 2833 | . . . . . 6 ⊢ (((𝑎 = 𝐴 ∧ 𝑥 = 𝑢) ∧ 𝑦 = 𝑣) → (𝑥 ∈ (𝑎𝐼𝑦) ↔ 𝑢 ∈ (𝐴𝐼𝑣))) |
10 | 9 | cbvraldva 3394 | . . . . 5 ⊢ ((𝑎 = 𝐴 ∧ 𝑥 = 𝑢) → (∀𝑦 ∈ 𝑇 𝑥 ∈ (𝑎𝐼𝑦) ↔ ∀𝑣 ∈ 𝑇 𝑢 ∈ (𝐴𝐼𝑣))) |
11 | 10 | cbvraldva 3394 | . . . 4 ⊢ (𝑎 = 𝐴 → (∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 𝑥 ∈ (𝑎𝐼𝑦) ↔ ∀𝑢 ∈ 𝑆 ∀𝑣 ∈ 𝑇 𝑢 ∈ (𝐴𝐼𝑣))) |
12 | 11 | rspcev 3561 | . . 3 ⊢ ((𝐴 ∈ 𝑃 ∧ ∀𝑢 ∈ 𝑆 ∀𝑣 ∈ 𝑇 𝑢 ∈ (𝐴𝐼𝑣)) → ∃𝑎 ∈ 𝑃 ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 𝑥 ∈ (𝑎𝐼𝑦)) |
13 | 1, 4, 12 | syl2anc 584 | . 2 ⊢ (𝜑 → ∃𝑎 ∈ 𝑃 ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 𝑥 ∈ (𝑎𝐼𝑦)) |
14 | axtrkg.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
15 | axtrkg.d | . . 3 ⊢ − = (dist‘𝐺) | |
16 | axtrkg.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
17 | axtrkg.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
18 | axtgcont.1 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ 𝑃) | |
19 | axtgcont.2 | . . 3 ⊢ (𝜑 → 𝑇 ⊆ 𝑃) | |
20 | 14, 15, 16, 17, 18, 19 | axtgcont1 26829 | . 2 ⊢ (𝜑 → (∃𝑎 ∈ 𝑃 ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 𝑥 ∈ (𝑎𝐼𝑦) → ∃𝑏 ∈ 𝑃 ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 𝑏 ∈ (𝑥𝐼𝑦))) |
21 | 13, 20 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑏 ∈ 𝑃 ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 𝑏 ∈ (𝑥𝐼𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∃wrex 3065 ⊆ wss 3887 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 distcds 16971 TarskiGcstrkg 26788 Itvcitv 26794 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-ov 7278 df-trkgb 26810 df-trkg 26814 |
This theorem is referenced by: f1otrg 27232 |
Copyright terms: Public domain | W3C validator |