MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axtgcont Structured version   Visualization version   GIF version

Theorem axtgcont 27975
Description: Axiom of Continuity. Axiom A11 of [Schwabhauser] p. 13. For more information see axtgcont1 27974. (Contributed by Thierry Arnoux, 16-Mar-2019.)
Hypotheses
Ref Expression
axtrkg.p 𝑃 = (Baseβ€˜πΊ)
axtrkg.d βˆ’ = (distβ€˜πΊ)
axtrkg.i 𝐼 = (Itvβ€˜πΊ)
axtrkg.g (πœ‘ β†’ 𝐺 ∈ TarskiG)
axtgcont.1 (πœ‘ β†’ 𝑆 βŠ† 𝑃)
axtgcont.2 (πœ‘ β†’ 𝑇 βŠ† 𝑃)
axtgcont.3 (πœ‘ β†’ 𝐴 ∈ 𝑃)
axtgcont.4 ((πœ‘ ∧ 𝑒 ∈ 𝑆 ∧ 𝑣 ∈ 𝑇) β†’ 𝑒 ∈ (𝐴𝐼𝑣))
Assertion
Ref Expression
axtgcont (πœ‘ β†’ βˆƒπ‘ ∈ 𝑃 βˆ€π‘₯ ∈ 𝑆 βˆ€π‘¦ ∈ 𝑇 𝑏 ∈ (π‘₯𝐼𝑦))
Distinct variable groups:   π‘₯,𝑦   𝑣,𝑏,𝐴,𝑒,π‘₯,𝑦   𝐼,𝑏   𝑣,𝑒,π‘₯,𝑦,𝐼   𝑃,𝑏,𝑒,𝑣,π‘₯,𝑦   𝑆,𝑏,π‘₯   𝑇,𝑏,π‘₯,𝑦   βˆ’ ,𝑏,𝑒,𝑣,π‘₯,𝑦   πœ‘,𝑒,𝑣   𝑒,𝑆,𝑣   𝑒,𝑇,𝑣   𝑒,𝐴,π‘₯,𝑦
Allowed substitution hints:   πœ‘(π‘₯,𝑦,𝑏)   𝑆(𝑦)   𝐺(π‘₯,𝑦,𝑣,𝑒,𝑏)

Proof of Theorem axtgcont
Dummy variable π‘Ž is distinct from all other variables.
StepHypRef Expression
1 axtgcont.3 . . 3 (πœ‘ β†’ 𝐴 ∈ 𝑃)
2 axtgcont.4 . . . . 5 ((πœ‘ ∧ 𝑒 ∈ 𝑆 ∧ 𝑣 ∈ 𝑇) β†’ 𝑒 ∈ (𝐴𝐼𝑣))
323expb 1120 . . . 4 ((πœ‘ ∧ (𝑒 ∈ 𝑆 ∧ 𝑣 ∈ 𝑇)) β†’ 𝑒 ∈ (𝐴𝐼𝑣))
43ralrimivva 3200 . . 3 (πœ‘ β†’ βˆ€π‘’ ∈ 𝑆 βˆ€π‘£ ∈ 𝑇 𝑒 ∈ (𝐴𝐼𝑣))
5 simplr 767 . . . . . . 7 (((π‘Ž = 𝐴 ∧ π‘₯ = 𝑒) ∧ 𝑦 = 𝑣) β†’ π‘₯ = 𝑒)
6 simpll 765 . . . . . . . 8 (((π‘Ž = 𝐴 ∧ π‘₯ = 𝑒) ∧ 𝑦 = 𝑣) β†’ π‘Ž = 𝐴)
7 simpr 485 . . . . . . . 8 (((π‘Ž = 𝐴 ∧ π‘₯ = 𝑒) ∧ 𝑦 = 𝑣) β†’ 𝑦 = 𝑣)
86, 7oveq12d 7429 . . . . . . 7 (((π‘Ž = 𝐴 ∧ π‘₯ = 𝑒) ∧ 𝑦 = 𝑣) β†’ (π‘ŽπΌπ‘¦) = (𝐴𝐼𝑣))
95, 8eleq12d 2827 . . . . . 6 (((π‘Ž = 𝐴 ∧ π‘₯ = 𝑒) ∧ 𝑦 = 𝑣) β†’ (π‘₯ ∈ (π‘ŽπΌπ‘¦) ↔ 𝑒 ∈ (𝐴𝐼𝑣)))
109cbvraldva 3236 . . . . 5 ((π‘Ž = 𝐴 ∧ π‘₯ = 𝑒) β†’ (βˆ€π‘¦ ∈ 𝑇 π‘₯ ∈ (π‘ŽπΌπ‘¦) ↔ βˆ€π‘£ ∈ 𝑇 𝑒 ∈ (𝐴𝐼𝑣)))
1110cbvraldva 3236 . . . 4 (π‘Ž = 𝐴 β†’ (βˆ€π‘₯ ∈ 𝑆 βˆ€π‘¦ ∈ 𝑇 π‘₯ ∈ (π‘ŽπΌπ‘¦) ↔ βˆ€π‘’ ∈ 𝑆 βˆ€π‘£ ∈ 𝑇 𝑒 ∈ (𝐴𝐼𝑣)))
1211rspcev 3612 . . 3 ((𝐴 ∈ 𝑃 ∧ βˆ€π‘’ ∈ 𝑆 βˆ€π‘£ ∈ 𝑇 𝑒 ∈ (𝐴𝐼𝑣)) β†’ βˆƒπ‘Ž ∈ 𝑃 βˆ€π‘₯ ∈ 𝑆 βˆ€π‘¦ ∈ 𝑇 π‘₯ ∈ (π‘ŽπΌπ‘¦))
131, 4, 12syl2anc 584 . 2 (πœ‘ β†’ βˆƒπ‘Ž ∈ 𝑃 βˆ€π‘₯ ∈ 𝑆 βˆ€π‘¦ ∈ 𝑇 π‘₯ ∈ (π‘ŽπΌπ‘¦))
14 axtrkg.p . . 3 𝑃 = (Baseβ€˜πΊ)
15 axtrkg.d . . 3 βˆ’ = (distβ€˜πΊ)
16 axtrkg.i . . 3 𝐼 = (Itvβ€˜πΊ)
17 axtrkg.g . . 3 (πœ‘ β†’ 𝐺 ∈ TarskiG)
18 axtgcont.1 . . 3 (πœ‘ β†’ 𝑆 βŠ† 𝑃)
19 axtgcont.2 . . 3 (πœ‘ β†’ 𝑇 βŠ† 𝑃)
2014, 15, 16, 17, 18, 19axtgcont1 27974 . 2 (πœ‘ β†’ (βˆƒπ‘Ž ∈ 𝑃 βˆ€π‘₯ ∈ 𝑆 βˆ€π‘¦ ∈ 𝑇 π‘₯ ∈ (π‘ŽπΌπ‘¦) β†’ βˆƒπ‘ ∈ 𝑃 βˆ€π‘₯ ∈ 𝑆 βˆ€π‘¦ ∈ 𝑇 𝑏 ∈ (π‘₯𝐼𝑦)))
2113, 20mpd 15 1 (πœ‘ β†’ βˆƒπ‘ ∈ 𝑃 βˆ€π‘₯ ∈ 𝑆 βˆ€π‘¦ ∈ 𝑇 𝑏 ∈ (π‘₯𝐼𝑦))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061  βˆƒwrex 3070   βŠ† wss 3948  β€˜cfv 6543  (class class class)co 7411  Basecbs 17148  distcds 17210  TarskiGcstrkg 27933  Itvcitv 27939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5299  ax-nul 5306
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-iota 6495  df-fv 6551  df-ov 7414  df-trkgb 27955  df-trkg 27959
This theorem is referenced by:  f1otrg  28377
  Copyright terms: Public domain W3C validator