| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > axtgcont | Structured version Visualization version GIF version | ||
| Description: Axiom of Continuity. Axiom A11 of [Schwabhauser] p. 13. For more information see axtgcont1 28395. (Contributed by Thierry Arnoux, 16-Mar-2019.) |
| Ref | Expression |
|---|---|
| axtrkg.p | ⊢ 𝑃 = (Base‘𝐺) |
| axtrkg.d | ⊢ − = (dist‘𝐺) |
| axtrkg.i | ⊢ 𝐼 = (Itv‘𝐺) |
| axtrkg.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| axtgcont.1 | ⊢ (𝜑 → 𝑆 ⊆ 𝑃) |
| axtgcont.2 | ⊢ (𝜑 → 𝑇 ⊆ 𝑃) |
| axtgcont.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| axtgcont.4 | ⊢ ((𝜑 ∧ 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑇) → 𝑢 ∈ (𝐴𝐼𝑣)) |
| Ref | Expression |
|---|---|
| axtgcont | ⊢ (𝜑 → ∃𝑏 ∈ 𝑃 ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 𝑏 ∈ (𝑥𝐼𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axtgcont.3 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 2 | axtgcont.4 | . . . . 5 ⊢ ((𝜑 ∧ 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑇) → 𝑢 ∈ (𝐴𝐼𝑣)) | |
| 3 | 2 | 3expb 1120 | . . . 4 ⊢ ((𝜑 ∧ (𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑇)) → 𝑢 ∈ (𝐴𝐼𝑣)) |
| 4 | 3 | ralrimivva 3180 | . . 3 ⊢ (𝜑 → ∀𝑢 ∈ 𝑆 ∀𝑣 ∈ 𝑇 𝑢 ∈ (𝐴𝐼𝑣)) |
| 5 | simplr 768 | . . . . . . 7 ⊢ (((𝑎 = 𝐴 ∧ 𝑥 = 𝑢) ∧ 𝑦 = 𝑣) → 𝑥 = 𝑢) | |
| 6 | simpll 766 | . . . . . . . 8 ⊢ (((𝑎 = 𝐴 ∧ 𝑥 = 𝑢) ∧ 𝑦 = 𝑣) → 𝑎 = 𝐴) | |
| 7 | simpr 484 | . . . . . . . 8 ⊢ (((𝑎 = 𝐴 ∧ 𝑥 = 𝑢) ∧ 𝑦 = 𝑣) → 𝑦 = 𝑣) | |
| 8 | 6, 7 | oveq12d 7405 | . . . . . . 7 ⊢ (((𝑎 = 𝐴 ∧ 𝑥 = 𝑢) ∧ 𝑦 = 𝑣) → (𝑎𝐼𝑦) = (𝐴𝐼𝑣)) |
| 9 | 5, 8 | eleq12d 2822 | . . . . . 6 ⊢ (((𝑎 = 𝐴 ∧ 𝑥 = 𝑢) ∧ 𝑦 = 𝑣) → (𝑥 ∈ (𝑎𝐼𝑦) ↔ 𝑢 ∈ (𝐴𝐼𝑣))) |
| 10 | 9 | cbvraldva 3217 | . . . . 5 ⊢ ((𝑎 = 𝐴 ∧ 𝑥 = 𝑢) → (∀𝑦 ∈ 𝑇 𝑥 ∈ (𝑎𝐼𝑦) ↔ ∀𝑣 ∈ 𝑇 𝑢 ∈ (𝐴𝐼𝑣))) |
| 11 | 10 | cbvraldva 3217 | . . . 4 ⊢ (𝑎 = 𝐴 → (∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 𝑥 ∈ (𝑎𝐼𝑦) ↔ ∀𝑢 ∈ 𝑆 ∀𝑣 ∈ 𝑇 𝑢 ∈ (𝐴𝐼𝑣))) |
| 12 | 11 | rspcev 3588 | . . 3 ⊢ ((𝐴 ∈ 𝑃 ∧ ∀𝑢 ∈ 𝑆 ∀𝑣 ∈ 𝑇 𝑢 ∈ (𝐴𝐼𝑣)) → ∃𝑎 ∈ 𝑃 ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 𝑥 ∈ (𝑎𝐼𝑦)) |
| 13 | 1, 4, 12 | syl2anc 584 | . 2 ⊢ (𝜑 → ∃𝑎 ∈ 𝑃 ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 𝑥 ∈ (𝑎𝐼𝑦)) |
| 14 | axtrkg.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
| 15 | axtrkg.d | . . 3 ⊢ − = (dist‘𝐺) | |
| 16 | axtrkg.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
| 17 | axtrkg.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 18 | axtgcont.1 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ 𝑃) | |
| 19 | axtgcont.2 | . . 3 ⊢ (𝜑 → 𝑇 ⊆ 𝑃) | |
| 20 | 14, 15, 16, 17, 18, 19 | axtgcont1 28395 | . 2 ⊢ (𝜑 → (∃𝑎 ∈ 𝑃 ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 𝑥 ∈ (𝑎𝐼𝑦) → ∃𝑏 ∈ 𝑃 ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 𝑏 ∈ (𝑥𝐼𝑦))) |
| 21 | 13, 20 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑏 ∈ 𝑃 ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 𝑏 ∈ (𝑥𝐼𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 ⊆ wss 3914 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 distcds 17229 TarskiGcstrkg 28354 Itvcitv 28360 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 df-trkgb 28376 df-trkg 28380 |
| This theorem is referenced by: f1otrg 28798 |
| Copyright terms: Public domain | W3C validator |