Step | Hyp | Ref
| Expression |
1 | | axtgcont.3 |
. . 3
β’ (π β π΄ β π) |
2 | | axtgcont.4 |
. . . . 5
β’ ((π β§ π’ β π β§ π£ β π) β π’ β (π΄πΌπ£)) |
3 | 2 | 3expb 1120 |
. . . 4
β’ ((π β§ (π’ β π β§ π£ β π)) β π’ β (π΄πΌπ£)) |
4 | 3 | ralrimivva 3200 |
. . 3
β’ (π β βπ’ β π βπ£ β π π’ β (π΄πΌπ£)) |
5 | | simplr 767 |
. . . . . . 7
β’ (((π = π΄ β§ π₯ = π’) β§ π¦ = π£) β π₯ = π’) |
6 | | simpll 765 |
. . . . . . . 8
β’ (((π = π΄ β§ π₯ = π’) β§ π¦ = π£) β π = π΄) |
7 | | simpr 485 |
. . . . . . . 8
β’ (((π = π΄ β§ π₯ = π’) β§ π¦ = π£) β π¦ = π£) |
8 | 6, 7 | oveq12d 7429 |
. . . . . . 7
β’ (((π = π΄ β§ π₯ = π’) β§ π¦ = π£) β (ππΌπ¦) = (π΄πΌπ£)) |
9 | 5, 8 | eleq12d 2827 |
. . . . . 6
β’ (((π = π΄ β§ π₯ = π’) β§ π¦ = π£) β (π₯ β (ππΌπ¦) β π’ β (π΄πΌπ£))) |
10 | 9 | cbvraldva 3236 |
. . . . 5
β’ ((π = π΄ β§ π₯ = π’) β (βπ¦ β π π₯ β (ππΌπ¦) β βπ£ β π π’ β (π΄πΌπ£))) |
11 | 10 | cbvraldva 3236 |
. . . 4
β’ (π = π΄ β (βπ₯ β π βπ¦ β π π₯ β (ππΌπ¦) β βπ’ β π βπ£ β π π’ β (π΄πΌπ£))) |
12 | 11 | rspcev 3612 |
. . 3
β’ ((π΄ β π β§ βπ’ β π βπ£ β π π’ β (π΄πΌπ£)) β βπ β π βπ₯ β π βπ¦ β π π₯ β (ππΌπ¦)) |
13 | 1, 4, 12 | syl2anc 584 |
. 2
β’ (π β βπ β π βπ₯ β π βπ¦ β π π₯ β (ππΌπ¦)) |
14 | | axtrkg.p |
. . 3
β’ π = (BaseβπΊ) |
15 | | axtrkg.d |
. . 3
β’ β =
(distβπΊ) |
16 | | axtrkg.i |
. . 3
β’ πΌ = (ItvβπΊ) |
17 | | axtrkg.g |
. . 3
β’ (π β πΊ β TarskiG) |
18 | | axtgcont.1 |
. . 3
β’ (π β π β π) |
19 | | axtgcont.2 |
. . 3
β’ (π β π β π) |
20 | 14, 15, 16, 17, 18, 19 | axtgcont1 27974 |
. 2
β’ (π β (βπ β π βπ₯ β π βπ¦ β π π₯ β (ππΌπ¦) β βπ β π βπ₯ β π βπ¦ β π π β (π₯πΌπ¦))) |
21 | 13, 20 | mpd 15 |
1
β’ (π β βπ β π βπ₯ β π βπ¦ β π π β (π₯πΌπ¦)) |