MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axtgcont Structured version   Visualization version   GIF version

Theorem axtgcont 28396
Description: Axiom of Continuity. Axiom A11 of [Schwabhauser] p. 13. For more information see axtgcont1 28395. (Contributed by Thierry Arnoux, 16-Mar-2019.)
Hypotheses
Ref Expression
axtrkg.p 𝑃 = (Base‘𝐺)
axtrkg.d = (dist‘𝐺)
axtrkg.i 𝐼 = (Itv‘𝐺)
axtrkg.g (𝜑𝐺 ∈ TarskiG)
axtgcont.1 (𝜑𝑆𝑃)
axtgcont.2 (𝜑𝑇𝑃)
axtgcont.3 (𝜑𝐴𝑃)
axtgcont.4 ((𝜑𝑢𝑆𝑣𝑇) → 𝑢 ∈ (𝐴𝐼𝑣))
Assertion
Ref Expression
axtgcont (𝜑 → ∃𝑏𝑃𝑥𝑆𝑦𝑇 𝑏 ∈ (𝑥𝐼𝑦))
Distinct variable groups:   𝑥,𝑦   𝑣,𝑏,𝐴,𝑢,𝑥,𝑦   𝐼,𝑏   𝑣,𝑢,𝑥,𝑦,𝐼   𝑃,𝑏,𝑢,𝑣,𝑥,𝑦   𝑆,𝑏,𝑥   𝑇,𝑏,𝑥,𝑦   ,𝑏,𝑢,𝑣,𝑥,𝑦   𝜑,𝑢,𝑣   𝑢,𝑆,𝑣   𝑢,𝑇,𝑣   𝑢,𝐴,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑏)   𝑆(𝑦)   𝐺(𝑥,𝑦,𝑣,𝑢,𝑏)

Proof of Theorem axtgcont
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 axtgcont.3 . . 3 (𝜑𝐴𝑃)
2 axtgcont.4 . . . . 5 ((𝜑𝑢𝑆𝑣𝑇) → 𝑢 ∈ (𝐴𝐼𝑣))
323expb 1120 . . . 4 ((𝜑 ∧ (𝑢𝑆𝑣𝑇)) → 𝑢 ∈ (𝐴𝐼𝑣))
43ralrimivva 3180 . . 3 (𝜑 → ∀𝑢𝑆𝑣𝑇 𝑢 ∈ (𝐴𝐼𝑣))
5 simplr 768 . . . . . . 7 (((𝑎 = 𝐴𝑥 = 𝑢) ∧ 𝑦 = 𝑣) → 𝑥 = 𝑢)
6 simpll 766 . . . . . . . 8 (((𝑎 = 𝐴𝑥 = 𝑢) ∧ 𝑦 = 𝑣) → 𝑎 = 𝐴)
7 simpr 484 . . . . . . . 8 (((𝑎 = 𝐴𝑥 = 𝑢) ∧ 𝑦 = 𝑣) → 𝑦 = 𝑣)
86, 7oveq12d 7405 . . . . . . 7 (((𝑎 = 𝐴𝑥 = 𝑢) ∧ 𝑦 = 𝑣) → (𝑎𝐼𝑦) = (𝐴𝐼𝑣))
95, 8eleq12d 2822 . . . . . 6 (((𝑎 = 𝐴𝑥 = 𝑢) ∧ 𝑦 = 𝑣) → (𝑥 ∈ (𝑎𝐼𝑦) ↔ 𝑢 ∈ (𝐴𝐼𝑣)))
109cbvraldva 3217 . . . . 5 ((𝑎 = 𝐴𝑥 = 𝑢) → (∀𝑦𝑇 𝑥 ∈ (𝑎𝐼𝑦) ↔ ∀𝑣𝑇 𝑢 ∈ (𝐴𝐼𝑣)))
1110cbvraldva 3217 . . . 4 (𝑎 = 𝐴 → (∀𝑥𝑆𝑦𝑇 𝑥 ∈ (𝑎𝐼𝑦) ↔ ∀𝑢𝑆𝑣𝑇 𝑢 ∈ (𝐴𝐼𝑣)))
1211rspcev 3588 . . 3 ((𝐴𝑃 ∧ ∀𝑢𝑆𝑣𝑇 𝑢 ∈ (𝐴𝐼𝑣)) → ∃𝑎𝑃𝑥𝑆𝑦𝑇 𝑥 ∈ (𝑎𝐼𝑦))
131, 4, 12syl2anc 584 . 2 (𝜑 → ∃𝑎𝑃𝑥𝑆𝑦𝑇 𝑥 ∈ (𝑎𝐼𝑦))
14 axtrkg.p . . 3 𝑃 = (Base‘𝐺)
15 axtrkg.d . . 3 = (dist‘𝐺)
16 axtrkg.i . . 3 𝐼 = (Itv‘𝐺)
17 axtrkg.g . . 3 (𝜑𝐺 ∈ TarskiG)
18 axtgcont.1 . . 3 (𝜑𝑆𝑃)
19 axtgcont.2 . . 3 (𝜑𝑇𝑃)
2014, 15, 16, 17, 18, 19axtgcont1 28395 . 2 (𝜑 → (∃𝑎𝑃𝑥𝑆𝑦𝑇 𝑥 ∈ (𝑎𝐼𝑦) → ∃𝑏𝑃𝑥𝑆𝑦𝑇 𝑏 ∈ (𝑥𝐼𝑦)))
2113, 20mpd 15 1 (𝜑 → ∃𝑏𝑃𝑥𝑆𝑦𝑇 𝑏 ∈ (𝑥𝐼𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  wss 3914  cfv 6511  (class class class)co 7387  Basecbs 17179  distcds 17229  TarskiGcstrkg 28354  Itvcitv 28360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-iota 6464  df-fv 6519  df-ov 7390  df-trkgb 28376  df-trkg 28380
This theorem is referenced by:  f1otrg  28798
  Copyright terms: Public domain W3C validator