Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > r19.21v | Structured version Visualization version GIF version |
Description: Restricted quantifier version of 19.21v 1940. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 2-Jan-2020.) (Proof shortened by Wolf Lammen, 11-Dec-2024.) |
Ref | Expression |
---|---|
r19.21v | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.27 42 | . . . 4 ⊢ (𝜑 → ((𝜑 → 𝜓) → 𝜓)) | |
2 | 1 | ralimdv 3163 | . . 3 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) → ∀𝑥 ∈ 𝐴 𝜓)) |
3 | 2 | com12 32 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) |
4 | pm2.21 123 | . . . 4 ⊢ (¬ 𝜑 → (𝜑 → 𝜓)) | |
5 | 4 | ralrimivw 3144 | . . 3 ⊢ (¬ 𝜑 → ∀𝑥 ∈ 𝐴 (𝜑 → 𝜓)) |
6 | ax-1 6 | . . . 4 ⊢ (𝜓 → (𝜑 → 𝜓)) | |
7 | 6 | ralimi 3083 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 (𝜑 → 𝜓)) |
8 | 5, 7 | ja 186 | . 2 ⊢ ((𝜑 → ∀𝑥 ∈ 𝐴 𝜓) → ∀𝑥 ∈ 𝐴 (𝜑 → 𝜓)) |
9 | 3, 8 | impbii 208 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∀wral 3062 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ral 3063 |
This theorem is referenced by: r19.23v 3176 r19.32v 3185 rmo4 3670 2reu5lem3 3697 ra4v 3823 rmo3 3827 dftr5 5202 dftr5OLD 5203 reusv3 5337 tfinds2 7742 tfinds3 7743 fpr3g 8132 wfr3g 8169 tfrlem1 8238 tfr3 8261 oeordi 8449 ordiso2 9318 ordtypelem7 9327 cantnf 9495 dfac12lem3 9947 ttukeylem5 10315 ttukeylem6 10316 fpwwe2lem7 10439 grudomon 10619 raluz2 12683 bpolycl 15807 ndvdssub 16163 gcdcllem1 16251 acsfn2 17417 pgpfac1 19728 pgpfac 19732 isdomn2 20615 islindf4 21090 isclo2 22284 1stccn 22659 kgencn 22752 txflf 23202 fclsopn 23210 nn0min 31179 bnj580 32938 bnj852 32946 rdgprc 33815 naddssim 33882 conway 34038 filnetlem4 34615 poimirlem29 35850 heicant 35856 isdomn5 40213 ntrneixb 41743 2rexrsb 44652 tfis2d 46444 |
Copyright terms: Public domain | W3C validator |