Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > r19.21v | Structured version Visualization version GIF version |
Description: Restricted quantifier version of 19.21v 1945. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 2-Jan-2020.) |
Ref | Expression |
---|---|
r19.21v | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi2.04 388 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) ↔ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓))) | |
2 | 1 | albii 1825 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) ↔ ∀𝑥(𝜑 → (𝑥 ∈ 𝐴 → 𝜓))) |
3 | 19.21v 1945 | . . 3 ⊢ (∀𝑥(𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) ↔ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 → 𝜓))) | |
4 | 2, 3 | bitri 274 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) ↔ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 → 𝜓))) |
5 | df-ral 3070 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ ∀𝑥(𝑥 ∈ 𝐴 → (𝜑 → 𝜓))) | |
6 | df-ral 3070 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜓)) | |
7 | 6 | imbi2i 335 | . 2 ⊢ ((𝜑 → ∀𝑥 ∈ 𝐴 𝜓) ↔ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 → 𝜓))) |
8 | 4, 5, 7 | 3bitr4i 302 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1539 ∈ wcel 2109 ∀wral 3065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 |
This theorem depends on definitions: df-bi 206 df-ex 1786 df-ral 3070 |
This theorem is referenced by: r19.23v 3209 r19.32v 3269 rmo4 3668 2reu5lem3 3695 ra4v 3822 rmo3 3826 dftr5 5198 reusv3 5331 tfinds2 7698 tfinds3 7699 fpr3g 8085 wfr3g 8122 tfrlem1 8191 tfr3 8214 oeordi 8394 ordiso2 9235 ordtypelem7 9244 cantnf 9412 dfac12lem3 9885 ttukeylem5 10253 ttukeylem6 10254 fpwwe2lem7 10377 grudomon 10557 raluz2 12619 bpolycl 15743 ndvdssub 16099 gcdcllem1 16187 acsfn2 17353 pgpfac1 19664 pgpfac 19668 isdomn2 20551 islindf4 21026 isclo2 22220 1stccn 22595 kgencn 22688 txflf 23138 fclsopn 23146 nn0min 31113 bnj580 32872 bnj852 32880 rdgprc 33749 naddssim 33816 conway 33972 filnetlem4 34549 poimirlem29 35785 heicant 35791 isdomn5 40151 ntrneixb 41658 2rexrsb 44545 tfis2d 46338 |
Copyright terms: Public domain | W3C validator |