| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r19.21v | Structured version Visualization version GIF version | ||
| Description: Restricted quantifier version of 19.21v 1939. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 2-Jan-2020.) (Proof shortened by Wolf Lammen, 11-Dec-2024.) |
| Ref | Expression |
|---|---|
| r19.21v | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.27 42 | . . . 4 ⊢ (𝜑 → ((𝜑 → 𝜓) → 𝜓)) | |
| 2 | 1 | ralimdv 3148 | . . 3 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) → ∀𝑥 ∈ 𝐴 𝜓)) |
| 3 | 2 | com12 32 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) |
| 4 | pm2.21 123 | . . . 4 ⊢ (¬ 𝜑 → (𝜑 → 𝜓)) | |
| 5 | 4 | ralrimivw 3130 | . . 3 ⊢ (¬ 𝜑 → ∀𝑥 ∈ 𝐴 (𝜑 → 𝜓)) |
| 6 | ax-1 6 | . . . 4 ⊢ (𝜓 → (𝜑 → 𝜓)) | |
| 7 | 6 | ralimi 3067 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 (𝜑 → 𝜓)) |
| 8 | 5, 7 | ja 186 | . 2 ⊢ ((𝜑 → ∀𝑥 ∈ 𝐴 𝜓) → ∀𝑥 ∈ 𝐴 (𝜑 → 𝜓)) |
| 9 | 3, 8 | impbii 209 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∀wral 3045 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3046 |
| This theorem is referenced by: r19.23v 3162 r19.32v 3171 cbvraldva 3218 rmo4 3704 2reu5lem3 3731 ra4v 3851 rmo3 3855 dftr5 5221 dftr5OLD 5222 reusv3 5363 tfinds2 7843 tfinds3 7844 fpr3g 8267 wfr3g 8301 tfrlem1 8347 tfr3 8370 oeordi 8554 naddssim 8652 ordiso2 9475 ordtypelem7 9484 cantnf 9653 dfac12lem3 10106 ttukeylem5 10473 ttukeylem6 10474 fpwwe2lem7 10597 grudomon 10777 raluz2 12863 bpolycl 16025 ndvdssub 16386 gcdcllem1 16476 acsfn2 17631 pgpfac1 20019 pgpfac 20023 isdomn5 20626 isdomn2OLD 20628 islindf4 21754 isclo2 22982 1stccn 23357 kgencn 23450 txflf 23900 fclsopn 23908 conway 27718 nn0min 32752 bnj580 34910 bnj852 34918 rdgprc 35789 filnetlem4 36376 poimirlem29 37650 heicant 37656 indstrd 42188 ntrneixb 44091 trfr 44959 modelac8prim 44989 2rexrsb 47107 tfis2d 49673 |
| Copyright terms: Public domain | W3C validator |