MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.21v Structured version   Visualization version   GIF version

Theorem r19.21v 3173
Description: Restricted quantifier version of 19.21v 1942. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 2-Jan-2020.) (Proof shortened by Wolf Lammen, 11-Dec-2024.)
Assertion
Ref Expression
r19.21v (∀𝑥𝐴 (𝜑𝜓) ↔ (𝜑 → ∀𝑥𝐴 𝜓))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝐴(𝑥)

Proof of Theorem r19.21v
StepHypRef Expression
1 pm2.27 42 . . . 4 (𝜑 → ((𝜑𝜓) → 𝜓))
21ralimdv 3163 . . 3 (𝜑 → (∀𝑥𝐴 (𝜑𝜓) → ∀𝑥𝐴 𝜓))
32com12 32 . 2 (∀𝑥𝐴 (𝜑𝜓) → (𝜑 → ∀𝑥𝐴 𝜓))
4 pm2.21 123 . . . 4 𝜑 → (𝜑𝜓))
54ralrimivw 3144 . . 3 𝜑 → ∀𝑥𝐴 (𝜑𝜓))
6 ax-1 6 . . . 4 (𝜓 → (𝜑𝜓))
76ralimi 3083 . . 3 (∀𝑥𝐴 𝜓 → ∀𝑥𝐴 (𝜑𝜓))
85, 7ja 186 . 2 ((𝜑 → ∀𝑥𝐴 𝜓) → ∀𝑥𝐴 (𝜑𝜓))
93, 8impbii 208 1 (∀𝑥𝐴 (𝜑𝜓) ↔ (𝜑 → ∀𝑥𝐴 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wral 3062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913
This theorem depends on definitions:  df-bi 206  df-an 398  df-ral 3063
This theorem is referenced by:  r19.23v  3176  r19.32v  3185  rmo4  3679  2reu5lem3  3706  ra4v  3832  rmo3  3836  dftr5  5217  dftr5OLD  5218  reusv3  5352  tfinds2  7782  tfinds3  7783  fpr3g  8175  wfr3g  8212  tfrlem1  8281  tfr3  8304  oeordi  8493  ordiso2  9376  ordtypelem7  9385  cantnf  9554  dfac12lem3  10006  ttukeylem5  10374  ttukeylem6  10375  fpwwe2lem7  10498  grudomon  10678  raluz2  12742  bpolycl  15861  ndvdssub  16217  gcdcllem1  16305  acsfn2  17469  pgpfac1  19777  pgpfac  19781  isdomn2  20675  islindf4  21150  isclo2  22344  1stccn  22719  kgencn  22812  txflf  23262  fclsopn  23270  conway  27043  nn0min  31419  bnj580  33190  bnj852  33198  rdgprc  34053  naddssim  34122  filnetlem4  34707  poimirlem29  35962  heicant  35968  isdomn5  40479  ntrneixb  42078  2rexrsb  45012  tfis2d  46804
  Copyright terms: Public domain W3C validator