MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.21v Structured version   Visualization version   GIF version

Theorem r19.21v 3175
Description: Restricted quantifier version of 19.21v 1936. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 2-Jan-2020.)
Assertion
Ref Expression
r19.21v (∀𝑥𝐴 (𝜑𝜓) ↔ (𝜑 → ∀𝑥𝐴 𝜓))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝐴(𝑥)

Proof of Theorem r19.21v
StepHypRef Expression
1 bi2.04 391 . . . 4 ((𝑥𝐴 → (𝜑𝜓)) ↔ (𝜑 → (𝑥𝐴𝜓)))
21albii 1816 . . 3 (∀𝑥(𝑥𝐴 → (𝜑𝜓)) ↔ ∀𝑥(𝜑 → (𝑥𝐴𝜓)))
3 19.21v 1936 . . 3 (∀𝑥(𝜑 → (𝑥𝐴𝜓)) ↔ (𝜑 → ∀𝑥(𝑥𝐴𝜓)))
42, 3bitri 277 . 2 (∀𝑥(𝑥𝐴 → (𝜑𝜓)) ↔ (𝜑 → ∀𝑥(𝑥𝐴𝜓)))
5 df-ral 3143 . 2 (∀𝑥𝐴 (𝜑𝜓) ↔ ∀𝑥(𝑥𝐴 → (𝜑𝜓)))
6 df-ral 3143 . . 3 (∀𝑥𝐴 𝜓 ↔ ∀𝑥(𝑥𝐴𝜓))
76imbi2i 338 . 2 ((𝜑 → ∀𝑥𝐴 𝜓) ↔ (𝜑 → ∀𝑥(𝑥𝐴𝜓)))
84, 5, 73bitr4i 305 1 (∀𝑥𝐴 (𝜑𝜓) ↔ (𝜑 → ∀𝑥𝐴 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wal 1531  wcel 2110  wral 3138
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907
This theorem depends on definitions:  df-bi 209  df-ex 1777  df-ral 3143
This theorem is referenced by:  r19.23v  3279  r19.32v  3340  rmo4  3721  2reu5lem3  3748  ra4v  3868  rmo3  3872  rmo3OLD  3873  dftr5  5168  reusv3  5298  tfinds2  7572  tfinds3  7573  wfr3g  7947  tfrlem1  8006  tfr3  8029  oeordi  8207  ordiso2  8973  ordtypelem7  8982  cantnf  9150  dfac12lem3  9565  ttukeylem5  9929  ttukeylem6  9930  fpwwe2lem8  10053  grudomon  10233  raluz2  12291  bpolycl  15400  ndvdssub  15754  gcdcllem1  15842  acsfn2  16928  pgpfac1  19196  pgpfac  19200  isdomn2  20066  islindf4  20976  isclo2  21690  1stccn  22065  kgencn  22158  txflf  22608  fclsopn  22616  nn0min  30531  bnj580  32180  bnj852  32188  rdgprc  33034  fpr3g  33117  conway  33259  filnetlem4  33724  poimirlem29  34915  heicant  34921  ntrneixb  40438  2rexrsb  43293  tfis2d  44776
  Copyright terms: Public domain W3C validator