![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r19.21v | Structured version Visualization version GIF version |
Description: Restricted quantifier version of 19.21v 1898. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 2-Jan-2020.) |
Ref | Expression |
---|---|
r19.21v | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi2.04 380 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) ↔ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓))) | |
2 | 1 | albii 1782 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) ↔ ∀𝑥(𝜑 → (𝑥 ∈ 𝐴 → 𝜓))) |
3 | 19.21v 1898 | . . 3 ⊢ (∀𝑥(𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) ↔ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 → 𝜓))) | |
4 | 2, 3 | bitri 267 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) ↔ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 → 𝜓))) |
5 | df-ral 3094 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ ∀𝑥(𝑥 ∈ 𝐴 → (𝜑 → 𝜓))) | |
6 | df-ral 3094 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜓)) | |
7 | 6 | imbi2i 328 | . 2 ⊢ ((𝜑 → ∀𝑥 ∈ 𝐴 𝜓) ↔ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 → 𝜓))) |
8 | 4, 5, 7 | 3bitr4i 295 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∀wal 1505 ∈ wcel 2050 ∀wral 3089 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 |
This theorem depends on definitions: df-bi 199 df-ex 1743 df-ral 3094 |
This theorem is referenced by: r19.23v 3225 r19.32v 3282 rmo4 3634 2reu5lem3 3658 ra4v 3772 rmo3 3776 rmo3OLD 3777 dftr5 5033 reusv3 5159 tfinds2 7394 tfinds3 7395 wfr3g 7756 tfrlem1 7816 tfr3 7839 oeordi 8014 ordiso2 8774 ordtypelem7 8783 cantnf 8950 dfac12lem3 9365 ttukeylem5 9733 ttukeylem6 9734 fpwwe2lem8 9857 grudomon 10037 raluz2 12111 bpolycl 15266 ndvdssub 15620 gcdcllem1 15708 acsfn2 16792 pgpfac1 18952 pgpfac 18956 isdomn2 19793 islindf4 20684 isclo2 21400 1stccn 21775 kgencn 21868 txflf 22318 fclsopn 22326 nn0min 30283 bnj580 31829 bnj852 31837 rdgprc 32557 fpr3g 32640 conway 32782 filnetlem4 33247 poimirlem29 34359 heicant 34365 ntrneixb 39805 2rexrsb 42704 tfis2d 44148 |
Copyright terms: Public domain | W3C validator |