![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r19.21v | Structured version Visualization version GIF version |
Description: Restricted quantifier version of 19.21v 1942. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 2-Jan-2020.) (Proof shortened by Wolf Lammen, 11-Dec-2024.) |
Ref | Expression |
---|---|
r19.21v | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.27 42 | . . . 4 ⊢ (𝜑 → ((𝜑 → 𝜓) → 𝜓)) | |
2 | 1 | ralimdv 3169 | . . 3 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) → ∀𝑥 ∈ 𝐴 𝜓)) |
3 | 2 | com12 32 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) |
4 | pm2.21 123 | . . . 4 ⊢ (¬ 𝜑 → (𝜑 → 𝜓)) | |
5 | 4 | ralrimivw 3150 | . . 3 ⊢ (¬ 𝜑 → ∀𝑥 ∈ 𝐴 (𝜑 → 𝜓)) |
6 | ax-1 6 | . . . 4 ⊢ (𝜓 → (𝜑 → 𝜓)) | |
7 | 6 | ralimi 3083 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 (𝜑 → 𝜓)) |
8 | 5, 7 | ja 186 | . 2 ⊢ ((𝜑 → ∀𝑥 ∈ 𝐴 𝜓) → ∀𝑥 ∈ 𝐴 (𝜑 → 𝜓)) |
9 | 3, 8 | impbii 208 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∀wral 3061 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ral 3062 |
This theorem is referenced by: r19.23v 3182 r19.32v 3191 cbvraldva 3236 rmo4 3726 2reu5lem3 3753 ra4v 3879 rmo3 3883 dftr5 5269 dftr5OLD 5270 reusv3 5403 tfinds2 7855 tfinds3 7856 fpr3g 8272 wfr3g 8309 tfrlem1 8378 tfr3 8401 oeordi 8589 naddssim 8686 ordiso2 9512 ordtypelem7 9521 cantnf 9690 dfac12lem3 10142 ttukeylem5 10510 ttukeylem6 10511 fpwwe2lem7 10634 grudomon 10814 raluz2 12885 bpolycl 16000 ndvdssub 16356 gcdcllem1 16444 acsfn2 17611 pgpfac1 19991 pgpfac 19995 isdomn2 21115 isdomn5 21117 islindf4 21612 isclo2 22812 1stccn 23187 kgencn 23280 txflf 23730 fclsopn 23738 conway 27525 nn0min 32281 bnj580 34210 bnj852 34218 rdgprc 35058 filnetlem4 35569 poimirlem29 36820 heicant 36826 ntrneixb 43148 2rexrsb 46109 tfis2d 47813 |
Copyright terms: Public domain | W3C validator |