![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r19.21v | Structured version Visualization version GIF version |
Description: Restricted quantifier version of 19.21v 1938. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 2-Jan-2020.) (Proof shortened by Wolf Lammen, 11-Dec-2024.) |
Ref | Expression |
---|---|
r19.21v | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.27 42 | . . . 4 ⊢ (𝜑 → ((𝜑 → 𝜓) → 𝜓)) | |
2 | 1 | ralimdv 3175 | . . 3 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) → ∀𝑥 ∈ 𝐴 𝜓)) |
3 | 2 | com12 32 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) |
4 | pm2.21 123 | . . . 4 ⊢ (¬ 𝜑 → (𝜑 → 𝜓)) | |
5 | 4 | ralrimivw 3156 | . . 3 ⊢ (¬ 𝜑 → ∀𝑥 ∈ 𝐴 (𝜑 → 𝜓)) |
6 | ax-1 6 | . . . 4 ⊢ (𝜓 → (𝜑 → 𝜓)) | |
7 | 6 | ralimi 3089 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 (𝜑 → 𝜓)) |
8 | 5, 7 | ja 186 | . 2 ⊢ ((𝜑 → ∀𝑥 ∈ 𝐴 𝜓) → ∀𝑥 ∈ 𝐴 (𝜑 → 𝜓)) |
9 | 3, 8 | impbii 209 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∀wral 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3068 |
This theorem is referenced by: r19.23v 3189 r19.32v 3198 cbvraldva 3245 rmo4 3752 2reu5lem3 3779 ra4v 3907 rmo3 3911 dftr5 5287 dftr5OLD 5288 reusv3 5423 tfinds2 7901 tfinds3 7902 fpr3g 8326 wfr3g 8363 tfrlem1 8432 tfr3 8455 oeordi 8643 naddssim 8741 ordiso2 9584 ordtypelem7 9593 cantnf 9762 dfac12lem3 10215 ttukeylem5 10582 ttukeylem6 10583 fpwwe2lem7 10706 grudomon 10886 raluz2 12962 bpolycl 16100 ndvdssub 16457 gcdcllem1 16545 acsfn2 17721 pgpfac1 20124 pgpfac 20128 isdomn5 20732 isdomn2OLD 20734 islindf4 21881 isclo2 23117 1stccn 23492 kgencn 23585 txflf 24035 fclsopn 24043 conway 27862 nn0min 32824 bnj580 34889 bnj852 34897 rdgprc 35758 filnetlem4 36347 poimirlem29 37609 heicant 37615 indstrd 42150 ntrneixb 44057 2rexrsb 47017 tfis2d 48772 |
Copyright terms: Public domain | W3C validator |