Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > r19.21v | Structured version Visualization version GIF version |
Description: Restricted quantifier version of 19.21v 1942. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 2-Jan-2020.) (Proof shortened by Wolf Lammen, 11-Dec-2024.) |
Ref | Expression |
---|---|
r19.21v | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.27 42 | . . . 4 ⊢ (𝜑 → ((𝜑 → 𝜓) → 𝜓)) | |
2 | 1 | ralimdv 3163 | . . 3 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) → ∀𝑥 ∈ 𝐴 𝜓)) |
3 | 2 | com12 32 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) |
4 | pm2.21 123 | . . . 4 ⊢ (¬ 𝜑 → (𝜑 → 𝜓)) | |
5 | 4 | ralrimivw 3144 | . . 3 ⊢ (¬ 𝜑 → ∀𝑥 ∈ 𝐴 (𝜑 → 𝜓)) |
6 | ax-1 6 | . . . 4 ⊢ (𝜓 → (𝜑 → 𝜓)) | |
7 | 6 | ralimi 3083 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 (𝜑 → 𝜓)) |
8 | 5, 7 | ja 186 | . 2 ⊢ ((𝜑 → ∀𝑥 ∈ 𝐴 𝜓) → ∀𝑥 ∈ 𝐴 (𝜑 → 𝜓)) |
9 | 3, 8 | impbii 208 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∀wral 3062 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ral 3063 |
This theorem is referenced by: r19.23v 3176 r19.32v 3185 rmo4 3679 2reu5lem3 3706 ra4v 3832 rmo3 3836 dftr5 5217 dftr5OLD 5218 reusv3 5352 tfinds2 7782 tfinds3 7783 fpr3g 8175 wfr3g 8212 tfrlem1 8281 tfr3 8304 oeordi 8493 ordiso2 9376 ordtypelem7 9385 cantnf 9554 dfac12lem3 10006 ttukeylem5 10374 ttukeylem6 10375 fpwwe2lem7 10498 grudomon 10678 raluz2 12742 bpolycl 15861 ndvdssub 16217 gcdcllem1 16305 acsfn2 17469 pgpfac1 19777 pgpfac 19781 isdomn2 20675 islindf4 21150 isclo2 22344 1stccn 22719 kgencn 22812 txflf 23262 fclsopn 23270 conway 27043 nn0min 31419 bnj580 33190 bnj852 33198 rdgprc 34053 naddssim 34122 filnetlem4 34707 poimirlem29 35962 heicant 35968 isdomn5 40479 ntrneixb 42078 2rexrsb 45012 tfis2d 46804 |
Copyright terms: Public domain | W3C validator |