| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r19.21v | Structured version Visualization version GIF version | ||
| Description: Restricted quantifier version of 19.21v 1939. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 2-Jan-2020.) (Proof shortened by Wolf Lammen, 11-Dec-2024.) |
| Ref | Expression |
|---|---|
| r19.21v | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.27 42 | . . . 4 ⊢ (𝜑 → ((𝜑 → 𝜓) → 𝜓)) | |
| 2 | 1 | ralimdv 3147 | . . 3 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) → ∀𝑥 ∈ 𝐴 𝜓)) |
| 3 | 2 | com12 32 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) |
| 4 | pm2.21 123 | . . . 4 ⊢ (¬ 𝜑 → (𝜑 → 𝜓)) | |
| 5 | 4 | ralrimivw 3129 | . . 3 ⊢ (¬ 𝜑 → ∀𝑥 ∈ 𝐴 (𝜑 → 𝜓)) |
| 6 | ax-1 6 | . . . 4 ⊢ (𝜓 → (𝜑 → 𝜓)) | |
| 7 | 6 | ralimi 3066 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 (𝜑 → 𝜓)) |
| 8 | 5, 7 | ja 186 | . 2 ⊢ ((𝜑 → ∀𝑥 ∈ 𝐴 𝜓) → ∀𝑥 ∈ 𝐴 (𝜑 → 𝜓)) |
| 9 | 3, 8 | impbii 209 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3045 |
| This theorem is referenced by: r19.23v 3160 r19.32v 3168 cbvraldva 3215 rmo4 3698 2reu5lem3 3725 ra4v 3845 rmo3 3849 dftr5 5213 dftr5OLD 5214 reusv3 5355 tfinds2 7820 tfinds3 7821 fpr3g 8241 wfr3g 8275 tfrlem1 8321 tfr3 8344 oeordi 8528 naddssim 8626 ordiso2 9444 ordtypelem7 9453 cantnf 9622 dfac12lem3 10075 ttukeylem5 10442 ttukeylem6 10443 fpwwe2lem7 10566 grudomon 10746 raluz2 12832 bpolycl 15994 ndvdssub 16355 gcdcllem1 16445 acsfn2 17600 pgpfac1 19988 pgpfac 19992 isdomn5 20595 isdomn2OLD 20597 islindf4 21723 isclo2 22951 1stccn 23326 kgencn 23419 txflf 23869 fclsopn 23877 conway 27687 nn0min 32718 bnj580 34876 bnj852 34884 rdgprc 35755 filnetlem4 36342 poimirlem29 37616 heicant 37622 indstrd 42154 ntrneixb 44057 trfr 44925 modelac8prim 44955 2rexrsb 47076 tfis2d 49642 |
| Copyright terms: Public domain | W3C validator |