| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r19.21v | Structured version Visualization version GIF version | ||
| Description: Restricted quantifier version of 19.21v 1939. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 2-Jan-2020.) (Proof shortened by Wolf Lammen, 11-Dec-2024.) |
| Ref | Expression |
|---|---|
| r19.21v | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.27 42 | . . . 4 ⊢ (𝜑 → ((𝜑 → 𝜓) → 𝜓)) | |
| 2 | 1 | ralimdv 3147 | . . 3 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) → ∀𝑥 ∈ 𝐴 𝜓)) |
| 3 | 2 | com12 32 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) |
| 4 | pm2.21 123 | . . . 4 ⊢ (¬ 𝜑 → (𝜑 → 𝜓)) | |
| 5 | 4 | ralrimivw 3129 | . . 3 ⊢ (¬ 𝜑 → ∀𝑥 ∈ 𝐴 (𝜑 → 𝜓)) |
| 6 | ax-1 6 | . . . 4 ⊢ (𝜓 → (𝜑 → 𝜓)) | |
| 7 | 6 | ralimi 3066 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 (𝜑 → 𝜓)) |
| 8 | 5, 7 | ja 186 | . 2 ⊢ ((𝜑 → ∀𝑥 ∈ 𝐴 𝜓) → ∀𝑥 ∈ 𝐴 (𝜑 → 𝜓)) |
| 9 | 3, 8 | impbii 209 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3045 |
| This theorem is referenced by: r19.23v 3161 r19.32v 3170 cbvraldva 3217 rmo4 3701 2reu5lem3 3728 ra4v 3848 rmo3 3852 dftr5 5218 dftr5OLD 5219 reusv3 5360 tfinds2 7840 tfinds3 7841 fpr3g 8264 wfr3g 8298 tfrlem1 8344 tfr3 8367 oeordi 8551 naddssim 8649 ordiso2 9468 ordtypelem7 9477 cantnf 9646 dfac12lem3 10099 ttukeylem5 10466 ttukeylem6 10467 fpwwe2lem7 10590 grudomon 10770 raluz2 12856 bpolycl 16018 ndvdssub 16379 gcdcllem1 16469 acsfn2 17624 pgpfac1 20012 pgpfac 20016 isdomn5 20619 isdomn2OLD 20621 islindf4 21747 isclo2 22975 1stccn 23350 kgencn 23443 txflf 23893 fclsopn 23901 conway 27711 nn0min 32745 bnj580 34903 bnj852 34911 rdgprc 35782 filnetlem4 36369 poimirlem29 37643 heicant 37649 indstrd 42181 ntrneixb 44084 trfr 44952 modelac8prim 44982 2rexrsb 47103 tfis2d 49669 |
| Copyright terms: Public domain | W3C validator |