| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r19.21v | Structured version Visualization version GIF version | ||
| Description: Restricted quantifier version of 19.21v 1939. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 2-Jan-2020.) (Proof shortened by Wolf Lammen, 11-Dec-2024.) |
| Ref | Expression |
|---|---|
| r19.21v | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.27 42 | . . . 4 ⊢ (𝜑 → ((𝜑 → 𝜓) → 𝜓)) | |
| 2 | 1 | ralimdv 3154 | . . 3 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) → ∀𝑥 ∈ 𝐴 𝜓)) |
| 3 | 2 | com12 32 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) |
| 4 | pm2.21 123 | . . . 4 ⊢ (¬ 𝜑 → (𝜑 → 𝜓)) | |
| 5 | 4 | ralrimivw 3136 | . . 3 ⊢ (¬ 𝜑 → ∀𝑥 ∈ 𝐴 (𝜑 → 𝜓)) |
| 6 | ax-1 6 | . . . 4 ⊢ (𝜓 → (𝜑 → 𝜓)) | |
| 7 | 6 | ralimi 3073 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 (𝜑 → 𝜓)) |
| 8 | 5, 7 | ja 186 | . 2 ⊢ ((𝜑 → ∀𝑥 ∈ 𝐴 𝜓) → ∀𝑥 ∈ 𝐴 (𝜑 → 𝜓)) |
| 9 | 3, 8 | impbii 209 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∀wral 3051 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3052 |
| This theorem is referenced by: r19.23v 3168 r19.32v 3177 cbvraldva 3222 rmo4 3713 2reu5lem3 3740 ra4v 3860 rmo3 3864 dftr5 5233 dftr5OLD 5234 reusv3 5375 tfinds2 7859 tfinds3 7860 fpr3g 8284 wfr3g 8321 tfrlem1 8390 tfr3 8413 oeordi 8599 naddssim 8697 ordiso2 9529 ordtypelem7 9538 cantnf 9707 dfac12lem3 10160 ttukeylem5 10527 ttukeylem6 10528 fpwwe2lem7 10651 grudomon 10831 raluz2 12913 bpolycl 16068 ndvdssub 16428 gcdcllem1 16518 acsfn2 17675 pgpfac1 20063 pgpfac 20067 isdomn5 20670 isdomn2OLD 20672 islindf4 21798 isclo2 23026 1stccn 23401 kgencn 23494 txflf 23944 fclsopn 23952 conway 27763 nn0min 32799 bnj580 34944 bnj852 34952 rdgprc 35812 filnetlem4 36399 poimirlem29 37673 heicant 37679 indstrd 42206 ntrneixb 44119 trfr 44987 modelac8prim 45017 2rexrsb 47131 tfis2d 49544 |
| Copyright terms: Public domain | W3C validator |