MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.21v Structured version   Visualization version   GIF version

Theorem r19.21v 3102
Description: Restricted quantifier version of 19.21v 1945. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 2-Jan-2020.)
Assertion
Ref Expression
r19.21v (∀𝑥𝐴 (𝜑𝜓) ↔ (𝜑 → ∀𝑥𝐴 𝜓))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝐴(𝑥)

Proof of Theorem r19.21v
StepHypRef Expression
1 bi2.04 388 . . . 4 ((𝑥𝐴 → (𝜑𝜓)) ↔ (𝜑 → (𝑥𝐴𝜓)))
21albii 1825 . . 3 (∀𝑥(𝑥𝐴 → (𝜑𝜓)) ↔ ∀𝑥(𝜑 → (𝑥𝐴𝜓)))
3 19.21v 1945 . . 3 (∀𝑥(𝜑 → (𝑥𝐴𝜓)) ↔ (𝜑 → ∀𝑥(𝑥𝐴𝜓)))
42, 3bitri 274 . 2 (∀𝑥(𝑥𝐴 → (𝜑𝜓)) ↔ (𝜑 → ∀𝑥(𝑥𝐴𝜓)))
5 df-ral 3070 . 2 (∀𝑥𝐴 (𝜑𝜓) ↔ ∀𝑥(𝑥𝐴 → (𝜑𝜓)))
6 df-ral 3070 . . 3 (∀𝑥𝐴 𝜓 ↔ ∀𝑥(𝑥𝐴𝜓))
76imbi2i 335 . 2 ((𝜑 → ∀𝑥𝐴 𝜓) ↔ (𝜑 → ∀𝑥(𝑥𝐴𝜓)))
84, 5, 73bitr4i 302 1 (∀𝑥𝐴 (𝜑𝜓) ↔ (𝜑 → ∀𝑥𝐴 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1539  wcel 2109  wral 3065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916
This theorem depends on definitions:  df-bi 206  df-ex 1786  df-ral 3070
This theorem is referenced by:  r19.23v  3209  r19.32v  3269  rmo4  3668  2reu5lem3  3695  ra4v  3822  rmo3  3826  dftr5  5198  reusv3  5331  tfinds2  7698  tfinds3  7699  fpr3g  8085  wfr3g  8122  tfrlem1  8191  tfr3  8214  oeordi  8394  ordiso2  9235  ordtypelem7  9244  cantnf  9412  dfac12lem3  9885  ttukeylem5  10253  ttukeylem6  10254  fpwwe2lem7  10377  grudomon  10557  raluz2  12619  bpolycl  15743  ndvdssub  16099  gcdcllem1  16187  acsfn2  17353  pgpfac1  19664  pgpfac  19668  isdomn2  20551  islindf4  21026  isclo2  22220  1stccn  22595  kgencn  22688  txflf  23138  fclsopn  23146  nn0min  31113  bnj580  32872  bnj852  32880  rdgprc  33749  naddssim  33816  conway  33972  filnetlem4  34549  poimirlem29  35785  heicant  35791  isdomn5  40151  ntrneixb  41658  2rexrsb  44545  tfis2d  46338
  Copyright terms: Public domain W3C validator