![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r19.21v | Structured version Visualization version GIF version |
Description: Restricted quantifier version of 19.21v 1936. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 2-Jan-2020.) (Proof shortened by Wolf Lammen, 11-Dec-2024.) |
Ref | Expression |
---|---|
r19.21v | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.27 42 | . . . 4 ⊢ (𝜑 → ((𝜑 → 𝜓) → 𝜓)) | |
2 | 1 | ralimdv 3166 | . . 3 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) → ∀𝑥 ∈ 𝐴 𝜓)) |
3 | 2 | com12 32 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) |
4 | pm2.21 123 | . . . 4 ⊢ (¬ 𝜑 → (𝜑 → 𝜓)) | |
5 | 4 | ralrimivw 3147 | . . 3 ⊢ (¬ 𝜑 → ∀𝑥 ∈ 𝐴 (𝜑 → 𝜓)) |
6 | ax-1 6 | . . . 4 ⊢ (𝜓 → (𝜑 → 𝜓)) | |
7 | 6 | ralimi 3080 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 (𝜑 → 𝜓)) |
8 | 5, 7 | ja 186 | . 2 ⊢ ((𝜑 → ∀𝑥 ∈ 𝐴 𝜓) → ∀𝑥 ∈ 𝐴 (𝜑 → 𝜓)) |
9 | 3, 8 | impbii 209 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∀wral 3058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3059 |
This theorem is referenced by: r19.23v 3180 r19.32v 3189 cbvraldva 3236 rmo4 3738 2reu5lem3 3765 ra4v 3893 rmo3 3897 dftr5 5268 dftr5OLD 5269 reusv3 5410 tfinds2 7884 tfinds3 7885 fpr3g 8308 wfr3g 8345 tfrlem1 8414 tfr3 8437 oeordi 8623 naddssim 8721 ordiso2 9552 ordtypelem7 9561 cantnf 9730 dfac12lem3 10183 ttukeylem5 10550 ttukeylem6 10551 fpwwe2lem7 10674 grudomon 10854 raluz2 12936 bpolycl 16084 ndvdssub 16442 gcdcllem1 16532 acsfn2 17707 pgpfac1 20114 pgpfac 20118 isdomn5 20726 isdomn2OLD 20728 islindf4 21875 isclo2 23111 1stccn 23486 kgencn 23579 txflf 24029 fclsopn 24037 conway 27858 nn0min 32826 bnj580 34905 bnj852 34913 rdgprc 35775 filnetlem4 36363 poimirlem29 37635 heicant 37641 indstrd 42174 ntrneixb 44084 2rexrsb 47051 tfis2d 48910 |
Copyright terms: Public domain | W3C validator |