MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fpwwe2cbv Structured version   Visualization version   GIF version

Theorem fpwwe2cbv 10209
Description: Lemma for fpwwe2 10222. (Contributed by Mario Carneiro, 3-Jun-2015.)
Hypothesis
Ref Expression
fpwwe2.1 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))}
Assertion
Ref Expression
fpwwe2cbv 𝑊 = {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 [(𝑠 “ {𝑧}) / 𝑣](𝑣𝐹(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))}
Distinct variable groups:   𝑦,𝑢   𝑟,𝑎,𝑠,𝑢,𝑣,𝑥,𝑦,𝑧,𝐹   𝐴,𝑎,𝑟,𝑠,𝑥,𝑧
Allowed substitution hints:   𝐴(𝑦,𝑣,𝑢)   𝑊(𝑥,𝑦,𝑧,𝑣,𝑢,𝑠,𝑟,𝑎)

Proof of Theorem fpwwe2cbv
StepHypRef Expression
1 fpwwe2.1 . 2 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))}
2 simpl 486 . . . . . 6 ((𝑥 = 𝑎𝑟 = 𝑠) → 𝑥 = 𝑎)
32sseq1d 3918 . . . . 5 ((𝑥 = 𝑎𝑟 = 𝑠) → (𝑥𝐴𝑎𝐴))
4 simpr 488 . . . . . 6 ((𝑥 = 𝑎𝑟 = 𝑠) → 𝑟 = 𝑠)
52sqxpeqd 5568 . . . . . 6 ((𝑥 = 𝑎𝑟 = 𝑠) → (𝑥 × 𝑥) = (𝑎 × 𝑎))
64, 5sseq12d 3920 . . . . 5 ((𝑥 = 𝑎𝑟 = 𝑠) → (𝑟 ⊆ (𝑥 × 𝑥) ↔ 𝑠 ⊆ (𝑎 × 𝑎)))
73, 6anbi12d 634 . . . 4 ((𝑥 = 𝑎𝑟 = 𝑠) → ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ↔ (𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎))))
8 weeq2 5525 . . . . . 6 (𝑥 = 𝑎 → (𝑟 We 𝑥𝑟 We 𝑎))
9 weeq1 5524 . . . . . 6 (𝑟 = 𝑠 → (𝑟 We 𝑎𝑠 We 𝑎))
108, 9sylan9bb 513 . . . . 5 ((𝑥 = 𝑎𝑟 = 𝑠) → (𝑟 We 𝑥𝑠 We 𝑎))
11 id 22 . . . . . . . . . . 11 (𝑢 = 𝑣𝑢 = 𝑣)
1211sqxpeqd 5568 . . . . . . . . . . . 12 (𝑢 = 𝑣 → (𝑢 × 𝑢) = (𝑣 × 𝑣))
1312ineq2d 4113 . . . . . . . . . . 11 (𝑢 = 𝑣 → (𝑟 ∩ (𝑢 × 𝑢)) = (𝑟 ∩ (𝑣 × 𝑣)))
1411, 13oveq12d 7209 . . . . . . . . . 10 (𝑢 = 𝑣 → (𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = (𝑣𝐹(𝑟 ∩ (𝑣 × 𝑣))))
1514eqeq1d 2738 . . . . . . . . 9 (𝑢 = 𝑣 → ((𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦 ↔ (𝑣𝐹(𝑟 ∩ (𝑣 × 𝑣))) = 𝑦))
1615cbvsbcvw 3718 . . . . . . . 8 ([(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦[(𝑟 “ {𝑦}) / 𝑣](𝑣𝐹(𝑟 ∩ (𝑣 × 𝑣))) = 𝑦)
17 sneq 4537 . . . . . . . . . 10 (𝑦 = 𝑧 → {𝑦} = {𝑧})
1817imaeq2d 5914 . . . . . . . . 9 (𝑦 = 𝑧 → (𝑟 “ {𝑦}) = (𝑟 “ {𝑧}))
19 eqeq2 2748 . . . . . . . . 9 (𝑦 = 𝑧 → ((𝑣𝐹(𝑟 ∩ (𝑣 × 𝑣))) = 𝑦 ↔ (𝑣𝐹(𝑟 ∩ (𝑣 × 𝑣))) = 𝑧))
2018, 19sbceqbid 3690 . . . . . . . 8 (𝑦 = 𝑧 → ([(𝑟 “ {𝑦}) / 𝑣](𝑣𝐹(𝑟 ∩ (𝑣 × 𝑣))) = 𝑦[(𝑟 “ {𝑧}) / 𝑣](𝑣𝐹(𝑟 ∩ (𝑣 × 𝑣))) = 𝑧))
2116, 20syl5bb 286 . . . . . . 7 (𝑦 = 𝑧 → ([(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦[(𝑟 “ {𝑧}) / 𝑣](𝑣𝐹(𝑟 ∩ (𝑣 × 𝑣))) = 𝑧))
2221cbvralvw 3348 . . . . . 6 (∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦 ↔ ∀𝑧𝑥 [(𝑟 “ {𝑧}) / 𝑣](𝑣𝐹(𝑟 ∩ (𝑣 × 𝑣))) = 𝑧)
234cnveqd 5729 . . . . . . . . 9 ((𝑥 = 𝑎𝑟 = 𝑠) → 𝑟 = 𝑠)
2423imaeq1d 5913 . . . . . . . 8 ((𝑥 = 𝑎𝑟 = 𝑠) → (𝑟 “ {𝑧}) = (𝑠 “ {𝑧}))
254ineq1d 4112 . . . . . . . . . 10 ((𝑥 = 𝑎𝑟 = 𝑠) → (𝑟 ∩ (𝑣 × 𝑣)) = (𝑠 ∩ (𝑣 × 𝑣)))
2625oveq2d 7207 . . . . . . . . 9 ((𝑥 = 𝑎𝑟 = 𝑠) → (𝑣𝐹(𝑟 ∩ (𝑣 × 𝑣))) = (𝑣𝐹(𝑠 ∩ (𝑣 × 𝑣))))
2726eqeq1d 2738 . . . . . . . 8 ((𝑥 = 𝑎𝑟 = 𝑠) → ((𝑣𝐹(𝑟 ∩ (𝑣 × 𝑣))) = 𝑧 ↔ (𝑣𝐹(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))
2824, 27sbceqbid 3690 . . . . . . 7 ((𝑥 = 𝑎𝑟 = 𝑠) → ([(𝑟 “ {𝑧}) / 𝑣](𝑣𝐹(𝑟 ∩ (𝑣 × 𝑣))) = 𝑧[(𝑠 “ {𝑧}) / 𝑣](𝑣𝐹(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))
292, 28raleqbidv 3303 . . . . . 6 ((𝑥 = 𝑎𝑟 = 𝑠) → (∀𝑧𝑥 [(𝑟 “ {𝑧}) / 𝑣](𝑣𝐹(𝑟 ∩ (𝑣 × 𝑣))) = 𝑧 ↔ ∀𝑧𝑎 [(𝑠 “ {𝑧}) / 𝑣](𝑣𝐹(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))
3022, 29syl5bb 286 . . . . 5 ((𝑥 = 𝑎𝑟 = 𝑠) → (∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦 ↔ ∀𝑧𝑎 [(𝑠 “ {𝑧}) / 𝑣](𝑣𝐹(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))
3110, 30anbi12d 634 . . . 4 ((𝑥 = 𝑎𝑟 = 𝑠) → ((𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦) ↔ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 [(𝑠 “ {𝑧}) / 𝑣](𝑣𝐹(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧)))
327, 31anbi12d 634 . . 3 ((𝑥 = 𝑎𝑟 = 𝑠) → (((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦)) ↔ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 [(𝑠 “ {𝑧}) / 𝑣](𝑣𝐹(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))))
3332cbvopabv 5111 . 2 {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))} = {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 [(𝑠 “ {𝑧}) / 𝑣](𝑣𝐹(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))}
341, 33eqtri 2759 1 𝑊 = {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 [(𝑠 “ {𝑧}) / 𝑣](𝑣𝐹(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))}
Colors of variables: wff setvar class
Syntax hints:  wa 399   = wceq 1543  wral 3051  [wsbc 3683  cin 3852  wss 3853  {csn 4527  {copab 5101   We wwe 5493   × cxp 5534  ccnv 5535  cima 5539  (class class class)co 7191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-ext 2708
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2073  df-clab 2715  df-cleq 2728  df-clel 2809  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3400  df-sbc 3684  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-br 5040  df-opab 5102  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-cnv 5544  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6316  df-fv 6366  df-ov 7194
This theorem is referenced by:  fpwwe2lem11  10220  fpwwe2lem12  10221  canthwe  10230  pwfseqlem5  10242
  Copyright terms: Public domain W3C validator