MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvsbc Structured version   Visualization version   GIF version

Theorem cbvsbc 3763
Description: Change bound variables in a wff substitution. Usage of this theorem is discouraged because it depends on ax-13 2370. Use the weaker cbvsbcw 3761 when possible. (Contributed by Jeff Hankins, 19-Sep-2009.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
cbvsbc.1 𝑦𝜑
cbvsbc.2 𝑥𝜓
cbvsbc.3 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvsbc ([𝐴 / 𝑥]𝜑[𝐴 / 𝑦]𝜓)

Proof of Theorem cbvsbc
StepHypRef Expression
1 cbvsbc.1 . . . 4 𝑦𝜑
2 cbvsbc.2 . . . 4 𝑥𝜓
3 cbvsbc.3 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
41, 2, 3cbvab 2812 . . 3 {𝑥𝜑} = {𝑦𝜓}
54eleq2i 2828 . 2 (𝐴 ∈ {𝑥𝜑} ↔ 𝐴 ∈ {𝑦𝜓})
6 df-sbc 3728 . 2 ([𝐴 / 𝑥]𝜑𝐴 ∈ {𝑥𝜑})
7 df-sbc 3728 . 2 ([𝐴 / 𝑦]𝜓𝐴 ∈ {𝑦𝜓})
85, 6, 73bitr4i 302 1 ([𝐴 / 𝑥]𝜑[𝐴 / 𝑦]𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wnf 1784  wcel 2105  {cab 2713  [wsbc 3727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-13 2370  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1543  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-sbc 3728
This theorem is referenced by:  cbvsbcv  3764  cbvcsb  3854
  Copyright terms: Public domain W3C validator