Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cbvsbc | Structured version Visualization version GIF version |
Description: Change bound variables in a wff substitution. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker cbvsbcw 3745 when possible. (Contributed by Jeff Hankins, 19-Sep-2009.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cbvsbc.1 | ⊢ Ⅎ𝑦𝜑 |
cbvsbc.2 | ⊢ Ⅎ𝑥𝜓 |
cbvsbc.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvsbc | ⊢ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑦]𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvsbc.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
2 | cbvsbc.2 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
3 | cbvsbc.3 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
4 | 1, 2, 3 | cbvab 2815 | . . 3 ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} |
5 | 4 | eleq2i 2830 | . 2 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝐴 ∈ {𝑦 ∣ 𝜓}) |
6 | df-sbc 3712 | . 2 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) | |
7 | df-sbc 3712 | . 2 ⊢ ([𝐴 / 𝑦]𝜓 ↔ 𝐴 ∈ {𝑦 ∣ 𝜓}) | |
8 | 5, 6, 7 | 3bitr4i 302 | 1 ⊢ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑦]𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 Ⅎwnf 1787 ∈ wcel 2108 {cab 2715 [wsbc 3711 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-13 2372 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-sbc 3712 |
This theorem is referenced by: cbvsbcv 3748 cbvcsb 3839 |
Copyright terms: Public domain | W3C validator |