| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvsbc | Structured version Visualization version GIF version | ||
| Description: Change bound variables in a wff substitution. Usage of this theorem is discouraged because it depends on ax-13 2377. Use the weaker cbvsbcw 3803 when possible. (Contributed by Jeff Hankins, 19-Sep-2009.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| cbvsbc.1 | ⊢ Ⅎ𝑦𝜑 |
| cbvsbc.2 | ⊢ Ⅎ𝑥𝜓 |
| cbvsbc.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvsbc | ⊢ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑦]𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvsbc.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
| 2 | cbvsbc.2 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
| 3 | cbvsbc.3 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 4 | 1, 2, 3 | cbvab 2808 | . . 3 ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} |
| 5 | 4 | eleq2i 2827 | . 2 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝐴 ∈ {𝑦 ∣ 𝜓}) |
| 6 | df-sbc 3771 | . 2 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) | |
| 7 | df-sbc 3771 | . 2 ⊢ ([𝐴 / 𝑦]𝜓 ↔ 𝐴 ∈ {𝑦 ∣ 𝜓}) | |
| 8 | 5, 6, 7 | 3bitr4i 303 | 1 ⊢ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑦]𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 Ⅎwnf 1783 ∈ wcel 2109 {cab 2714 [wsbc 3770 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-13 2377 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-sbc 3771 |
| This theorem is referenced by: cbvsbcv 3806 cbvcsb 3890 |
| Copyright terms: Public domain | W3C validator |