MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clel3 Structured version   Visualization version   GIF version

Theorem clel3 3605
Description: Alternate definition of membership in a set. (Contributed by NM, 18-Aug-1993.)
Hypothesis
Ref Expression
clel3.1 𝐵 ∈ V
Assertion
Ref Expression
clel3 (𝐴𝐵 ↔ ∃𝑥(𝑥 = 𝐵𝐴𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem clel3
StepHypRef Expression
1 clel3.1 . 2 𝐵 ∈ V
2 clel3g 3604 . 2 (𝐵 ∈ V → (𝐴𝐵 ↔ ∃𝑥(𝑥 = 𝐵𝐴𝑥)))
31, 2ax-mp 5 1 (𝐴𝐵 ↔ ∃𝑥(𝑥 = 𝐵𝐴𝑥))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 397   = wceq 1541  wex 1781  wcel 2106  Vcvv 3442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2708
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2715  df-cleq 2729  df-clel 2815
This theorem is referenced by:  uniprOLD  4875  elold  34161  brcup  34378  brcap  34379
  Copyright terms: Public domain W3C validator