![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clel3 | Structured version Visualization version GIF version |
Description: An alternate definition of class membership when the class is a set. (Contributed by NM, 18-Aug-1993.) |
Ref | Expression |
---|---|
clel3.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
clel3 | ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐵 ∧ 𝐴 ∈ 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clel3.1 | . 2 ⊢ 𝐵 ∈ V | |
2 | clel3g 3530 | . 2 ⊢ (𝐵 ∈ V → (𝐴 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐵 ∧ 𝐴 ∈ 𝑥))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐵 ∧ 𝐴 ∈ 𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∧ wa 385 = wceq 1653 ∃wex 1875 ∈ wcel 2157 Vcvv 3385 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-12 2213 ax-ext 2777 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-v 3387 |
This theorem is referenced by: unipr 4641 brcup 32559 brcap 32560 |
Copyright terms: Public domain | W3C validator |