Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brcap Structured version   Visualization version   GIF version

Theorem brcap 36054
Description: Binary relation form of the Cap function. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Hypotheses
Ref Expression
brcap.1 𝐴 ∈ V
brcap.2 𝐵 ∈ V
brcap.3 𝐶 ∈ V
Assertion
Ref Expression
brcap (⟨𝐴, 𝐵⟩Cap𝐶𝐶 = (𝐴𝐵))

Proof of Theorem brcap
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opex 5409 . 2 𝐴, 𝐵⟩ ∈ V
2 brcap.3 . 2 𝐶 ∈ V
3 df-cap 35984 . 2 Cap = (((V × V) × V) ∖ ran ((V ⊗ E ) △ (((1st ∘ E ) ∩ (2nd ∘ E )) ⊗ V)))
4 brcap.1 . . . 4 𝐴 ∈ V
5 brcap.2 . . . 4 𝐵 ∈ V
64, 5opelvv 5661 . . 3 𝐴, 𝐵⟩ ∈ (V × V)
7 brxp 5670 . . 3 (⟨𝐴, 𝐵⟩((V × V) × V)𝐶 ↔ (⟨𝐴, 𝐵⟩ ∈ (V × V) ∧ 𝐶 ∈ V))
86, 2, 7mpbir2an 711 . 2 𝐴, 𝐵⟩((V × V) × V)𝐶
9 epel 5524 . . . . . . 7 (𝑥 E 𝑦𝑥𝑦)
10 vex 3441 . . . . . . . . 9 𝑦 ∈ V
1110, 1brcnv 5828 . . . . . . . 8 (𝑦1st𝐴, 𝐵⟩ ↔ ⟨𝐴, 𝐵⟩1st 𝑦)
124, 5br1steq 35887 . . . . . . . 8 (⟨𝐴, 𝐵⟩1st 𝑦𝑦 = 𝐴)
1311, 12bitri 275 . . . . . . 7 (𝑦1st𝐴, 𝐵⟩ ↔ 𝑦 = 𝐴)
149, 13anbi12ci 629 . . . . . 6 ((𝑥 E 𝑦𝑦1st𝐴, 𝐵⟩) ↔ (𝑦 = 𝐴𝑥𝑦))
1514exbii 1849 . . . . 5 (∃𝑦(𝑥 E 𝑦𝑦1st𝐴, 𝐵⟩) ↔ ∃𝑦(𝑦 = 𝐴𝑥𝑦))
16 vex 3441 . . . . . 6 𝑥 ∈ V
1716, 1brco 5816 . . . . 5 (𝑥(1st ∘ E )⟨𝐴, 𝐵⟩ ↔ ∃𝑦(𝑥 E 𝑦𝑦1st𝐴, 𝐵⟩))
184clel3 3613 . . . . 5 (𝑥𝐴 ↔ ∃𝑦(𝑦 = 𝐴𝑥𝑦))
1915, 17, 183bitr4i 303 . . . 4 (𝑥(1st ∘ E )⟨𝐴, 𝐵⟩ ↔ 𝑥𝐴)
2010, 1brcnv 5828 . . . . . . . 8 (𝑦2nd𝐴, 𝐵⟩ ↔ ⟨𝐴, 𝐵⟩2nd 𝑦)
214, 5br2ndeq 35888 . . . . . . . 8 (⟨𝐴, 𝐵⟩2nd 𝑦𝑦 = 𝐵)
2220, 21bitri 275 . . . . . . 7 (𝑦2nd𝐴, 𝐵⟩ ↔ 𝑦 = 𝐵)
239, 22anbi12ci 629 . . . . . 6 ((𝑥 E 𝑦𝑦2nd𝐴, 𝐵⟩) ↔ (𝑦 = 𝐵𝑥𝑦))
2423exbii 1849 . . . . 5 (∃𝑦(𝑥 E 𝑦𝑦2nd𝐴, 𝐵⟩) ↔ ∃𝑦(𝑦 = 𝐵𝑥𝑦))
2516, 1brco 5816 . . . . 5 (𝑥(2nd ∘ E )⟨𝐴, 𝐵⟩ ↔ ∃𝑦(𝑥 E 𝑦𝑦2nd𝐴, 𝐵⟩))
265clel3 3613 . . . . 5 (𝑥𝐵 ↔ ∃𝑦(𝑦 = 𝐵𝑥𝑦))
2724, 25, 263bitr4i 303 . . . 4 (𝑥(2nd ∘ E )⟨𝐴, 𝐵⟩ ↔ 𝑥𝐵)
2819, 27anbi12i 628 . . 3 ((𝑥(1st ∘ E )⟨𝐴, 𝐵⟩ ∧ 𝑥(2nd ∘ E )⟨𝐴, 𝐵⟩) ↔ (𝑥𝐴𝑥𝐵))
29 brin 5147 . . 3 (𝑥((1st ∘ E ) ∩ (2nd ∘ E ))⟨𝐴, 𝐵⟩ ↔ (𝑥(1st ∘ E )⟨𝐴, 𝐵⟩ ∧ 𝑥(2nd ∘ E )⟨𝐴, 𝐵⟩))
30 elin 3914 . . 3 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
3128, 29, 303bitr4ri 304 . 2 (𝑥 ∈ (𝐴𝐵) ↔ 𝑥((1st ∘ E ) ∩ (2nd ∘ E ))⟨𝐴, 𝐵⟩)
321, 2, 3, 8, 31brtxpsd3 36010 1 (⟨𝐴, 𝐵⟩Cap𝐶𝐶 = (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2113  Vcvv 3437  cin 3897  cop 4583   class class class wbr 5095   E cep 5520   × cxp 5619  ccnv 5620  ccom 5625  1st c1st 7928  2nd c2nd 7929  Capccap 35961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-symdif 4202  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-eprel 5521  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-fo 6495  df-fv 6497  df-1st 7930  df-2nd 7931  df-txp 35968  df-cap 35984
This theorem is referenced by:  brrestrict  36065
  Copyright terms: Public domain W3C validator