MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniprOLD Structured version   Visualization version   GIF version

Theorem uniprOLD 4824
Description: Obsolete version of unipr 4823 as of 1-Sep-2024. (Contributed by NM, 23-Aug-1993.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
unipr.1 𝐴 ∈ V
unipr.2 𝐵 ∈ V
Assertion
Ref Expression
uniprOLD {𝐴, 𝐵} = (𝐴𝐵)

Proof of Theorem uniprOLD
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 19.43 1890 . . . 4 (∃𝑦((𝑥𝑦𝑦 = 𝐴) ∨ (𝑥𝑦𝑦 = 𝐵)) ↔ (∃𝑦(𝑥𝑦𝑦 = 𝐴) ∨ ∃𝑦(𝑥𝑦𝑦 = 𝐵)))
2 vex 3402 . . . . . . . 8 𝑦 ∈ V
32elpr 4550 . . . . . . 7 (𝑦 ∈ {𝐴, 𝐵} ↔ (𝑦 = 𝐴𝑦 = 𝐵))
43anbi2i 626 . . . . . 6 ((𝑥𝑦𝑦 ∈ {𝐴, 𝐵}) ↔ (𝑥𝑦 ∧ (𝑦 = 𝐴𝑦 = 𝐵)))
5 andi 1008 . . . . . 6 ((𝑥𝑦 ∧ (𝑦 = 𝐴𝑦 = 𝐵)) ↔ ((𝑥𝑦𝑦 = 𝐴) ∨ (𝑥𝑦𝑦 = 𝐵)))
64, 5bitri 278 . . . . 5 ((𝑥𝑦𝑦 ∈ {𝐴, 𝐵}) ↔ ((𝑥𝑦𝑦 = 𝐴) ∨ (𝑥𝑦𝑦 = 𝐵)))
76exbii 1855 . . . 4 (∃𝑦(𝑥𝑦𝑦 ∈ {𝐴, 𝐵}) ↔ ∃𝑦((𝑥𝑦𝑦 = 𝐴) ∨ (𝑥𝑦𝑦 = 𝐵)))
8 unipr.1 . . . . . . 7 𝐴 ∈ V
98clel3 3560 . . . . . 6 (𝑥𝐴 ↔ ∃𝑦(𝑦 = 𝐴𝑥𝑦))
10 exancom 1869 . . . . . 6 (∃𝑦(𝑦 = 𝐴𝑥𝑦) ↔ ∃𝑦(𝑥𝑦𝑦 = 𝐴))
119, 10bitri 278 . . . . 5 (𝑥𝐴 ↔ ∃𝑦(𝑥𝑦𝑦 = 𝐴))
12 unipr.2 . . . . . . 7 𝐵 ∈ V
1312clel3 3560 . . . . . 6 (𝑥𝐵 ↔ ∃𝑦(𝑦 = 𝐵𝑥𝑦))
14 exancom 1869 . . . . . 6 (∃𝑦(𝑦 = 𝐵𝑥𝑦) ↔ ∃𝑦(𝑥𝑦𝑦 = 𝐵))
1513, 14bitri 278 . . . . 5 (𝑥𝐵 ↔ ∃𝑦(𝑥𝑦𝑦 = 𝐵))
1611, 15orbi12i 915 . . . 4 ((𝑥𝐴𝑥𝐵) ↔ (∃𝑦(𝑥𝑦𝑦 = 𝐴) ∨ ∃𝑦(𝑥𝑦𝑦 = 𝐵)))
171, 7, 163bitr4ri 307 . . 3 ((𝑥𝐴𝑥𝐵) ↔ ∃𝑦(𝑥𝑦𝑦 ∈ {𝐴, 𝐵}))
1817abbii 2801 . 2 {𝑥 ∣ (𝑥𝐴𝑥𝐵)} = {𝑥 ∣ ∃𝑦(𝑥𝑦𝑦 ∈ {𝐴, 𝐵})}
19 df-un 3858 . 2 (𝐴𝐵) = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
20 df-uni 4806 . 2 {𝐴, 𝐵} = {𝑥 ∣ ∃𝑦(𝑥𝑦𝑦 ∈ {𝐴, 𝐵})}
2118, 19, 203eqtr4ri 2770 1 {𝐴, 𝐵} = (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wa 399  wo 847   = wceq 1543  wex 1787  wcel 2112  {cab 2714  Vcvv 3398  cun 3851  {cpr 4529   cuni 4805
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-ext 2708
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-tru 1546  df-ex 1788  df-sb 2073  df-clab 2715  df-cleq 2728  df-clel 2809  df-v 3400  df-un 3858  df-sn 4528  df-pr 4530  df-uni 4806
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator