MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elold Structured version   Visualization version   GIF version

Theorem elold 27817
Description: Membership in an old set. (Contributed by Scott Fenton, 7-Aug-2024.)
Assertion
Ref Expression
elold (𝐴 ∈ On → (𝑋 ∈ ( O ‘𝐴) ↔ ∃𝑏𝐴 𝑋 ∈ ( M ‘𝑏)))
Distinct variable groups:   𝐴,𝑏   𝑋,𝑏

Proof of Theorem elold
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 oldval 27798 . . 3 (𝐴 ∈ On → ( O ‘𝐴) = ( M “ 𝐴))
21eleq2d 2819 . 2 (𝐴 ∈ On → (𝑋 ∈ ( O ‘𝐴) ↔ 𝑋 ( M “ 𝐴)))
3 eluni 4863 . . 3 (𝑋 ( M “ 𝐴) ↔ ∃𝑦(𝑋𝑦𝑦 ∈ ( M “ 𝐴)))
4 madef 27800 . . . . . . . 8 M :On⟶𝒫 No
5 ffn 6658 . . . . . . . 8 ( M :On⟶𝒫 No → M Fn On)
64, 5ax-mp 5 . . . . . . 7 M Fn On
7 onss 7726 . . . . . . 7 (𝐴 ∈ On → 𝐴 ⊆ On)
8 fvelimab 6902 . . . . . . 7 (( M Fn On ∧ 𝐴 ⊆ On) → (𝑦 ∈ ( M “ 𝐴) ↔ ∃𝑏𝐴 ( M ‘𝑏) = 𝑦))
96, 7, 8sylancr 587 . . . . . 6 (𝐴 ∈ On → (𝑦 ∈ ( M “ 𝐴) ↔ ∃𝑏𝐴 ( M ‘𝑏) = 𝑦))
109anbi2d 630 . . . . 5 (𝐴 ∈ On → ((𝑋𝑦𝑦 ∈ ( M “ 𝐴)) ↔ (𝑋𝑦 ∧ ∃𝑏𝐴 ( M ‘𝑏) = 𝑦)))
1110exbidv 1922 . . . 4 (𝐴 ∈ On → (∃𝑦(𝑋𝑦𝑦 ∈ ( M “ 𝐴)) ↔ ∃𝑦(𝑋𝑦 ∧ ∃𝑏𝐴 ( M ‘𝑏) = 𝑦)))
12 fvex 6843 . . . . . . 7 ( M ‘𝑏) ∈ V
1312clel3 3613 . . . . . 6 (𝑋 ∈ ( M ‘𝑏) ↔ ∃𝑦(𝑦 = ( M ‘𝑏) ∧ 𝑋𝑦))
1413rexbii 3080 . . . . 5 (∃𝑏𝐴 𝑋 ∈ ( M ‘𝑏) ↔ ∃𝑏𝐴𝑦(𝑦 = ( M ‘𝑏) ∧ 𝑋𝑦))
15 rexcom4 3260 . . . . 5 (∃𝑏𝐴𝑦(𝑦 = ( M ‘𝑏) ∧ 𝑋𝑦) ↔ ∃𝑦𝑏𝐴 (𝑦 = ( M ‘𝑏) ∧ 𝑋𝑦))
16 eqcom 2740 . . . . . . . . 9 (𝑦 = ( M ‘𝑏) ↔ ( M ‘𝑏) = 𝑦)
1716anbi2ci 625 . . . . . . . 8 ((𝑦 = ( M ‘𝑏) ∧ 𝑋𝑦) ↔ (𝑋𝑦 ∧ ( M ‘𝑏) = 𝑦))
1817rexbii 3080 . . . . . . 7 (∃𝑏𝐴 (𝑦 = ( M ‘𝑏) ∧ 𝑋𝑦) ↔ ∃𝑏𝐴 (𝑋𝑦 ∧ ( M ‘𝑏) = 𝑦))
19 r19.42v 3165 . . . . . . 7 (∃𝑏𝐴 (𝑋𝑦 ∧ ( M ‘𝑏) = 𝑦) ↔ (𝑋𝑦 ∧ ∃𝑏𝐴 ( M ‘𝑏) = 𝑦))
2018, 19bitri 275 . . . . . 6 (∃𝑏𝐴 (𝑦 = ( M ‘𝑏) ∧ 𝑋𝑦) ↔ (𝑋𝑦 ∧ ∃𝑏𝐴 ( M ‘𝑏) = 𝑦))
2120exbii 1849 . . . . 5 (∃𝑦𝑏𝐴 (𝑦 = ( M ‘𝑏) ∧ 𝑋𝑦) ↔ ∃𝑦(𝑋𝑦 ∧ ∃𝑏𝐴 ( M ‘𝑏) = 𝑦))
2214, 15, 213bitrri 298 . . . 4 (∃𝑦(𝑋𝑦 ∧ ∃𝑏𝐴 ( M ‘𝑏) = 𝑦) ↔ ∃𝑏𝐴 𝑋 ∈ ( M ‘𝑏))
2311, 22bitrdi 287 . . 3 (𝐴 ∈ On → (∃𝑦(𝑋𝑦𝑦 ∈ ( M “ 𝐴)) ↔ ∃𝑏𝐴 𝑋 ∈ ( M ‘𝑏)))
243, 23bitrid 283 . 2 (𝐴 ∈ On → (𝑋 ( M “ 𝐴) ↔ ∃𝑏𝐴 𝑋 ∈ ( M ‘𝑏)))
252, 24bitrd 279 1 (𝐴 ∈ On → (𝑋 ∈ ( O ‘𝐴) ↔ ∃𝑏𝐴 𝑋 ∈ ( M ‘𝑏)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2113  wrex 3057  wss 3898  𝒫 cpw 4551   cuni 4860  cima 5624  Oncon0 6313   Fn wfn 6483  wf 6484  cfv 6488   No csur 27581   M cmade 27786   O cold 27787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-1o 8393  df-2o 8394  df-no 27584  df-slt 27585  df-bday 27586  df-sslt 27724  df-scut 27726  df-made 27791  df-old 27792
This theorem is referenced by:  oldssmade  27825  oldlim  27835  madebdayim  27836  oldbdayim  27837  madebdaylemold  27846
  Copyright terms: Public domain W3C validator