Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elold Structured version   Visualization version   GIF version

Theorem elold 33980
Description: Membership in an old set. (Contributed by Scott Fenton, 7-Aug-2024.)
Assertion
Ref Expression
elold (𝐴 ∈ On → (𝑋 ∈ ( O ‘𝐴) ↔ ∃𝑏𝐴 𝑋 ∈ ( M ‘𝑏)))
Distinct variable groups:   𝐴,𝑏   𝑋,𝑏

Proof of Theorem elold
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 oldval 33965 . . 3 (𝐴 ∈ On → ( O ‘𝐴) = ( M “ 𝐴))
21eleq2d 2824 . 2 (𝐴 ∈ On → (𝑋 ∈ ( O ‘𝐴) ↔ 𝑋 ( M “ 𝐴)))
3 eluni 4839 . . 3 (𝑋 ( M “ 𝐴) ↔ ∃𝑦(𝑋𝑦𝑦 ∈ ( M “ 𝐴)))
4 madef 33967 . . . . . . . 8 M :On⟶𝒫 No
5 ffn 6584 . . . . . . . 8 ( M :On⟶𝒫 No → M Fn On)
64, 5ax-mp 5 . . . . . . 7 M Fn On
7 onss 7611 . . . . . . 7 (𝐴 ∈ On → 𝐴 ⊆ On)
8 fvelimab 6823 . . . . . . 7 (( M Fn On ∧ 𝐴 ⊆ On) → (𝑦 ∈ ( M “ 𝐴) ↔ ∃𝑏𝐴 ( M ‘𝑏) = 𝑦))
96, 7, 8sylancr 586 . . . . . 6 (𝐴 ∈ On → (𝑦 ∈ ( M “ 𝐴) ↔ ∃𝑏𝐴 ( M ‘𝑏) = 𝑦))
109anbi2d 628 . . . . 5 (𝐴 ∈ On → ((𝑋𝑦𝑦 ∈ ( M “ 𝐴)) ↔ (𝑋𝑦 ∧ ∃𝑏𝐴 ( M ‘𝑏) = 𝑦)))
1110exbidv 1925 . . . 4 (𝐴 ∈ On → (∃𝑦(𝑋𝑦𝑦 ∈ ( M “ 𝐴)) ↔ ∃𝑦(𝑋𝑦 ∧ ∃𝑏𝐴 ( M ‘𝑏) = 𝑦)))
12 fvex 6769 . . . . . . 7 ( M ‘𝑏) ∈ V
1312clel3 3585 . . . . . 6 (𝑋 ∈ ( M ‘𝑏) ↔ ∃𝑦(𝑦 = ( M ‘𝑏) ∧ 𝑋𝑦))
1413rexbii 3177 . . . . 5 (∃𝑏𝐴 𝑋 ∈ ( M ‘𝑏) ↔ ∃𝑏𝐴𝑦(𝑦 = ( M ‘𝑏) ∧ 𝑋𝑦))
15 rexcom4 3179 . . . . 5 (∃𝑏𝐴𝑦(𝑦 = ( M ‘𝑏) ∧ 𝑋𝑦) ↔ ∃𝑦𝑏𝐴 (𝑦 = ( M ‘𝑏) ∧ 𝑋𝑦))
16 eqcom 2745 . . . . . . . . 9 (𝑦 = ( M ‘𝑏) ↔ ( M ‘𝑏) = 𝑦)
1716anbi2ci 624 . . . . . . . 8 ((𝑦 = ( M ‘𝑏) ∧ 𝑋𝑦) ↔ (𝑋𝑦 ∧ ( M ‘𝑏) = 𝑦))
1817rexbii 3177 . . . . . . 7 (∃𝑏𝐴 (𝑦 = ( M ‘𝑏) ∧ 𝑋𝑦) ↔ ∃𝑏𝐴 (𝑋𝑦 ∧ ( M ‘𝑏) = 𝑦))
19 r19.42v 3276 . . . . . . 7 (∃𝑏𝐴 (𝑋𝑦 ∧ ( M ‘𝑏) = 𝑦) ↔ (𝑋𝑦 ∧ ∃𝑏𝐴 ( M ‘𝑏) = 𝑦))
2018, 19bitri 274 . . . . . 6 (∃𝑏𝐴 (𝑦 = ( M ‘𝑏) ∧ 𝑋𝑦) ↔ (𝑋𝑦 ∧ ∃𝑏𝐴 ( M ‘𝑏) = 𝑦))
2120exbii 1851 . . . . 5 (∃𝑦𝑏𝐴 (𝑦 = ( M ‘𝑏) ∧ 𝑋𝑦) ↔ ∃𝑦(𝑋𝑦 ∧ ∃𝑏𝐴 ( M ‘𝑏) = 𝑦))
2214, 15, 213bitrri 297 . . . 4 (∃𝑦(𝑋𝑦 ∧ ∃𝑏𝐴 ( M ‘𝑏) = 𝑦) ↔ ∃𝑏𝐴 𝑋 ∈ ( M ‘𝑏))
2311, 22bitrdi 286 . . 3 (𝐴 ∈ On → (∃𝑦(𝑋𝑦𝑦 ∈ ( M “ 𝐴)) ↔ ∃𝑏𝐴 𝑋 ∈ ( M ‘𝑏)))
243, 23syl5bb 282 . 2 (𝐴 ∈ On → (𝑋 ( M “ 𝐴) ↔ ∃𝑏𝐴 𝑋 ∈ ( M ‘𝑏)))
252, 24bitrd 278 1 (𝐴 ∈ On → (𝑋 ∈ ( O ‘𝐴) ↔ ∃𝑏𝐴 𝑋 ∈ ( M ‘𝑏)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wex 1783  wcel 2108  wrex 3064  wss 3883  𝒫 cpw 4530   cuni 4836  cima 5583  Oncon0 6251   Fn wfn 6413  wf 6414  cfv 6418   No csur 33770   M cmade 33953   O cold 33954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-1o 8267  df-2o 8268  df-no 33773  df-slt 33774  df-bday 33775  df-sslt 33903  df-scut 33905  df-made 33958  df-old 33959
This theorem is referenced by:  oldssmade  33987  oldlim  33996  madebdayim  33997  oldbdayim  33998  madebdaylemold  34005
  Copyright terms: Public domain W3C validator