Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elold | Structured version Visualization version GIF version |
Description: Membership in an old set. (Contributed by Scott Fenton, 7-Aug-2024.) |
Ref | Expression |
---|---|
elold | ⊢ (𝐴 ∈ On → (𝑋 ∈ ( O ‘𝐴) ↔ ∃𝑏 ∈ 𝐴 𝑋 ∈ ( M ‘𝑏))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oldval 33965 | . . 3 ⊢ (𝐴 ∈ On → ( O ‘𝐴) = ∪ ( M “ 𝐴)) | |
2 | 1 | eleq2d 2824 | . 2 ⊢ (𝐴 ∈ On → (𝑋 ∈ ( O ‘𝐴) ↔ 𝑋 ∈ ∪ ( M “ 𝐴))) |
3 | eluni 4839 | . . 3 ⊢ (𝑋 ∈ ∪ ( M “ 𝐴) ↔ ∃𝑦(𝑋 ∈ 𝑦 ∧ 𝑦 ∈ ( M “ 𝐴))) | |
4 | madef 33967 | . . . . . . . 8 ⊢ M :On⟶𝒫 No | |
5 | ffn 6584 | . . . . . . . 8 ⊢ ( M :On⟶𝒫 No → M Fn On) | |
6 | 4, 5 | ax-mp 5 | . . . . . . 7 ⊢ M Fn On |
7 | onss 7611 | . . . . . . 7 ⊢ (𝐴 ∈ On → 𝐴 ⊆ On) | |
8 | fvelimab 6823 | . . . . . . 7 ⊢ (( M Fn On ∧ 𝐴 ⊆ On) → (𝑦 ∈ ( M “ 𝐴) ↔ ∃𝑏 ∈ 𝐴 ( M ‘𝑏) = 𝑦)) | |
9 | 6, 7, 8 | sylancr 586 | . . . . . 6 ⊢ (𝐴 ∈ On → (𝑦 ∈ ( M “ 𝐴) ↔ ∃𝑏 ∈ 𝐴 ( M ‘𝑏) = 𝑦)) |
10 | 9 | anbi2d 628 | . . . . 5 ⊢ (𝐴 ∈ On → ((𝑋 ∈ 𝑦 ∧ 𝑦 ∈ ( M “ 𝐴)) ↔ (𝑋 ∈ 𝑦 ∧ ∃𝑏 ∈ 𝐴 ( M ‘𝑏) = 𝑦))) |
11 | 10 | exbidv 1925 | . . . 4 ⊢ (𝐴 ∈ On → (∃𝑦(𝑋 ∈ 𝑦 ∧ 𝑦 ∈ ( M “ 𝐴)) ↔ ∃𝑦(𝑋 ∈ 𝑦 ∧ ∃𝑏 ∈ 𝐴 ( M ‘𝑏) = 𝑦))) |
12 | fvex 6769 | . . . . . . 7 ⊢ ( M ‘𝑏) ∈ V | |
13 | 12 | clel3 3585 | . . . . . 6 ⊢ (𝑋 ∈ ( M ‘𝑏) ↔ ∃𝑦(𝑦 = ( M ‘𝑏) ∧ 𝑋 ∈ 𝑦)) |
14 | 13 | rexbii 3177 | . . . . 5 ⊢ (∃𝑏 ∈ 𝐴 𝑋 ∈ ( M ‘𝑏) ↔ ∃𝑏 ∈ 𝐴 ∃𝑦(𝑦 = ( M ‘𝑏) ∧ 𝑋 ∈ 𝑦)) |
15 | rexcom4 3179 | . . . . 5 ⊢ (∃𝑏 ∈ 𝐴 ∃𝑦(𝑦 = ( M ‘𝑏) ∧ 𝑋 ∈ 𝑦) ↔ ∃𝑦∃𝑏 ∈ 𝐴 (𝑦 = ( M ‘𝑏) ∧ 𝑋 ∈ 𝑦)) | |
16 | eqcom 2745 | . . . . . . . . 9 ⊢ (𝑦 = ( M ‘𝑏) ↔ ( M ‘𝑏) = 𝑦) | |
17 | 16 | anbi2ci 624 | . . . . . . . 8 ⊢ ((𝑦 = ( M ‘𝑏) ∧ 𝑋 ∈ 𝑦) ↔ (𝑋 ∈ 𝑦 ∧ ( M ‘𝑏) = 𝑦)) |
18 | 17 | rexbii 3177 | . . . . . . 7 ⊢ (∃𝑏 ∈ 𝐴 (𝑦 = ( M ‘𝑏) ∧ 𝑋 ∈ 𝑦) ↔ ∃𝑏 ∈ 𝐴 (𝑋 ∈ 𝑦 ∧ ( M ‘𝑏) = 𝑦)) |
19 | r19.42v 3276 | . . . . . . 7 ⊢ (∃𝑏 ∈ 𝐴 (𝑋 ∈ 𝑦 ∧ ( M ‘𝑏) = 𝑦) ↔ (𝑋 ∈ 𝑦 ∧ ∃𝑏 ∈ 𝐴 ( M ‘𝑏) = 𝑦)) | |
20 | 18, 19 | bitri 274 | . . . . . 6 ⊢ (∃𝑏 ∈ 𝐴 (𝑦 = ( M ‘𝑏) ∧ 𝑋 ∈ 𝑦) ↔ (𝑋 ∈ 𝑦 ∧ ∃𝑏 ∈ 𝐴 ( M ‘𝑏) = 𝑦)) |
21 | 20 | exbii 1851 | . . . . 5 ⊢ (∃𝑦∃𝑏 ∈ 𝐴 (𝑦 = ( M ‘𝑏) ∧ 𝑋 ∈ 𝑦) ↔ ∃𝑦(𝑋 ∈ 𝑦 ∧ ∃𝑏 ∈ 𝐴 ( M ‘𝑏) = 𝑦)) |
22 | 14, 15, 21 | 3bitrri 297 | . . . 4 ⊢ (∃𝑦(𝑋 ∈ 𝑦 ∧ ∃𝑏 ∈ 𝐴 ( M ‘𝑏) = 𝑦) ↔ ∃𝑏 ∈ 𝐴 𝑋 ∈ ( M ‘𝑏)) |
23 | 11, 22 | bitrdi 286 | . . 3 ⊢ (𝐴 ∈ On → (∃𝑦(𝑋 ∈ 𝑦 ∧ 𝑦 ∈ ( M “ 𝐴)) ↔ ∃𝑏 ∈ 𝐴 𝑋 ∈ ( M ‘𝑏))) |
24 | 3, 23 | syl5bb 282 | . 2 ⊢ (𝐴 ∈ On → (𝑋 ∈ ∪ ( M “ 𝐴) ↔ ∃𝑏 ∈ 𝐴 𝑋 ∈ ( M ‘𝑏))) |
25 | 2, 24 | bitrd 278 | 1 ⊢ (𝐴 ∈ On → (𝑋 ∈ ( O ‘𝐴) ↔ ∃𝑏 ∈ 𝐴 𝑋 ∈ ( M ‘𝑏))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∃wex 1783 ∈ wcel 2108 ∃wrex 3064 ⊆ wss 3883 𝒫 cpw 4530 ∪ cuni 4836 “ cima 5583 Oncon0 6251 Fn wfn 6413 ⟶wf 6414 ‘cfv 6418 No csur 33770 M cmade 33953 O cold 33954 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-1o 8267 df-2o 8268 df-no 33773 df-slt 33774 df-bday 33775 df-sslt 33903 df-scut 33905 df-made 33958 df-old 33959 |
This theorem is referenced by: oldssmade 33987 oldlim 33996 madebdayim 33997 oldbdayim 33998 madebdaylemold 34005 |
Copyright terms: Public domain | W3C validator |