| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elold | Structured version Visualization version GIF version | ||
| Description: Membership in an old set. (Contributed by Scott Fenton, 7-Aug-2024.) |
| Ref | Expression |
|---|---|
| elold | ⊢ (𝐴 ∈ On → (𝑋 ∈ ( O ‘𝐴) ↔ ∃𝑏 ∈ 𝐴 𝑋 ∈ ( M ‘𝑏))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oldval 27782 | . . 3 ⊢ (𝐴 ∈ On → ( O ‘𝐴) = ∪ ( M “ 𝐴)) | |
| 2 | 1 | eleq2d 2814 | . 2 ⊢ (𝐴 ∈ On → (𝑋 ∈ ( O ‘𝐴) ↔ 𝑋 ∈ ∪ ( M “ 𝐴))) |
| 3 | eluni 4864 | . . 3 ⊢ (𝑋 ∈ ∪ ( M “ 𝐴) ↔ ∃𝑦(𝑋 ∈ 𝑦 ∧ 𝑦 ∈ ( M “ 𝐴))) | |
| 4 | madef 27784 | . . . . . . . 8 ⊢ M :On⟶𝒫 No | |
| 5 | ffn 6656 | . . . . . . . 8 ⊢ ( M :On⟶𝒫 No → M Fn On) | |
| 6 | 4, 5 | ax-mp 5 | . . . . . . 7 ⊢ M Fn On |
| 7 | onss 7725 | . . . . . . 7 ⊢ (𝐴 ∈ On → 𝐴 ⊆ On) | |
| 8 | fvelimab 6899 | . . . . . . 7 ⊢ (( M Fn On ∧ 𝐴 ⊆ On) → (𝑦 ∈ ( M “ 𝐴) ↔ ∃𝑏 ∈ 𝐴 ( M ‘𝑏) = 𝑦)) | |
| 9 | 6, 7, 8 | sylancr 587 | . . . . . 6 ⊢ (𝐴 ∈ On → (𝑦 ∈ ( M “ 𝐴) ↔ ∃𝑏 ∈ 𝐴 ( M ‘𝑏) = 𝑦)) |
| 10 | 9 | anbi2d 630 | . . . . 5 ⊢ (𝐴 ∈ On → ((𝑋 ∈ 𝑦 ∧ 𝑦 ∈ ( M “ 𝐴)) ↔ (𝑋 ∈ 𝑦 ∧ ∃𝑏 ∈ 𝐴 ( M ‘𝑏) = 𝑦))) |
| 11 | 10 | exbidv 1921 | . . . 4 ⊢ (𝐴 ∈ On → (∃𝑦(𝑋 ∈ 𝑦 ∧ 𝑦 ∈ ( M “ 𝐴)) ↔ ∃𝑦(𝑋 ∈ 𝑦 ∧ ∃𝑏 ∈ 𝐴 ( M ‘𝑏) = 𝑦))) |
| 12 | fvex 6839 | . . . . . . 7 ⊢ ( M ‘𝑏) ∈ V | |
| 13 | 12 | clel3 3619 | . . . . . 6 ⊢ (𝑋 ∈ ( M ‘𝑏) ↔ ∃𝑦(𝑦 = ( M ‘𝑏) ∧ 𝑋 ∈ 𝑦)) |
| 14 | 13 | rexbii 3076 | . . . . 5 ⊢ (∃𝑏 ∈ 𝐴 𝑋 ∈ ( M ‘𝑏) ↔ ∃𝑏 ∈ 𝐴 ∃𝑦(𝑦 = ( M ‘𝑏) ∧ 𝑋 ∈ 𝑦)) |
| 15 | rexcom4 3256 | . . . . 5 ⊢ (∃𝑏 ∈ 𝐴 ∃𝑦(𝑦 = ( M ‘𝑏) ∧ 𝑋 ∈ 𝑦) ↔ ∃𝑦∃𝑏 ∈ 𝐴 (𝑦 = ( M ‘𝑏) ∧ 𝑋 ∈ 𝑦)) | |
| 16 | eqcom 2736 | . . . . . . . . 9 ⊢ (𝑦 = ( M ‘𝑏) ↔ ( M ‘𝑏) = 𝑦) | |
| 17 | 16 | anbi2ci 625 | . . . . . . . 8 ⊢ ((𝑦 = ( M ‘𝑏) ∧ 𝑋 ∈ 𝑦) ↔ (𝑋 ∈ 𝑦 ∧ ( M ‘𝑏) = 𝑦)) |
| 18 | 17 | rexbii 3076 | . . . . . . 7 ⊢ (∃𝑏 ∈ 𝐴 (𝑦 = ( M ‘𝑏) ∧ 𝑋 ∈ 𝑦) ↔ ∃𝑏 ∈ 𝐴 (𝑋 ∈ 𝑦 ∧ ( M ‘𝑏) = 𝑦)) |
| 19 | r19.42v 3161 | . . . . . . 7 ⊢ (∃𝑏 ∈ 𝐴 (𝑋 ∈ 𝑦 ∧ ( M ‘𝑏) = 𝑦) ↔ (𝑋 ∈ 𝑦 ∧ ∃𝑏 ∈ 𝐴 ( M ‘𝑏) = 𝑦)) | |
| 20 | 18, 19 | bitri 275 | . . . . . 6 ⊢ (∃𝑏 ∈ 𝐴 (𝑦 = ( M ‘𝑏) ∧ 𝑋 ∈ 𝑦) ↔ (𝑋 ∈ 𝑦 ∧ ∃𝑏 ∈ 𝐴 ( M ‘𝑏) = 𝑦)) |
| 21 | 20 | exbii 1848 | . . . . 5 ⊢ (∃𝑦∃𝑏 ∈ 𝐴 (𝑦 = ( M ‘𝑏) ∧ 𝑋 ∈ 𝑦) ↔ ∃𝑦(𝑋 ∈ 𝑦 ∧ ∃𝑏 ∈ 𝐴 ( M ‘𝑏) = 𝑦)) |
| 22 | 14, 15, 21 | 3bitrri 298 | . . . 4 ⊢ (∃𝑦(𝑋 ∈ 𝑦 ∧ ∃𝑏 ∈ 𝐴 ( M ‘𝑏) = 𝑦) ↔ ∃𝑏 ∈ 𝐴 𝑋 ∈ ( M ‘𝑏)) |
| 23 | 11, 22 | bitrdi 287 | . . 3 ⊢ (𝐴 ∈ On → (∃𝑦(𝑋 ∈ 𝑦 ∧ 𝑦 ∈ ( M “ 𝐴)) ↔ ∃𝑏 ∈ 𝐴 𝑋 ∈ ( M ‘𝑏))) |
| 24 | 3, 23 | bitrid 283 | . 2 ⊢ (𝐴 ∈ On → (𝑋 ∈ ∪ ( M “ 𝐴) ↔ ∃𝑏 ∈ 𝐴 𝑋 ∈ ( M ‘𝑏))) |
| 25 | 2, 24 | bitrd 279 | 1 ⊢ (𝐴 ∈ On → (𝑋 ∈ ( O ‘𝐴) ↔ ∃𝑏 ∈ 𝐴 𝑋 ∈ ( M ‘𝑏))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∃wrex 3053 ⊆ wss 3905 𝒫 cpw 4553 ∪ cuni 4861 “ cima 5626 Oncon0 6311 Fn wfn 6481 ⟶wf 6482 ‘cfv 6486 No csur 27567 M cmade 27770 O cold 27771 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-1o 8395 df-2o 8396 df-no 27570 df-slt 27571 df-bday 27572 df-sslt 27710 df-scut 27712 df-made 27775 df-old 27776 |
| This theorem is referenced by: oldssmade 27809 oldlim 27819 madebdayim 27820 oldbdayim 27821 madebdaylemold 27830 |
| Copyright terms: Public domain | W3C validator |