Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elold | Structured version Visualization version GIF version |
Description: Membership in an old set. (Contributed by Scott Fenton, 7-Aug-2024.) |
Ref | Expression |
---|---|
elold | ⊢ (𝐴 ∈ On → (𝑋 ∈ ( O ‘𝐴) ↔ ∃𝑏 ∈ 𝐴 𝑋 ∈ ( M ‘𝑏))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oldval 34038 | . . 3 ⊢ (𝐴 ∈ On → ( O ‘𝐴) = ∪ ( M “ 𝐴)) | |
2 | 1 | eleq2d 2824 | . 2 ⊢ (𝐴 ∈ On → (𝑋 ∈ ( O ‘𝐴) ↔ 𝑋 ∈ ∪ ( M “ 𝐴))) |
3 | eluni 4842 | . . 3 ⊢ (𝑋 ∈ ∪ ( M “ 𝐴) ↔ ∃𝑦(𝑋 ∈ 𝑦 ∧ 𝑦 ∈ ( M “ 𝐴))) | |
4 | madef 34040 | . . . . . . . 8 ⊢ M :On⟶𝒫 No | |
5 | ffn 6600 | . . . . . . . 8 ⊢ ( M :On⟶𝒫 No → M Fn On) | |
6 | 4, 5 | ax-mp 5 | . . . . . . 7 ⊢ M Fn On |
7 | onss 7634 | . . . . . . 7 ⊢ (𝐴 ∈ On → 𝐴 ⊆ On) | |
8 | fvelimab 6841 | . . . . . . 7 ⊢ (( M Fn On ∧ 𝐴 ⊆ On) → (𝑦 ∈ ( M “ 𝐴) ↔ ∃𝑏 ∈ 𝐴 ( M ‘𝑏) = 𝑦)) | |
9 | 6, 7, 8 | sylancr 587 | . . . . . 6 ⊢ (𝐴 ∈ On → (𝑦 ∈ ( M “ 𝐴) ↔ ∃𝑏 ∈ 𝐴 ( M ‘𝑏) = 𝑦)) |
10 | 9 | anbi2d 629 | . . . . 5 ⊢ (𝐴 ∈ On → ((𝑋 ∈ 𝑦 ∧ 𝑦 ∈ ( M “ 𝐴)) ↔ (𝑋 ∈ 𝑦 ∧ ∃𝑏 ∈ 𝐴 ( M ‘𝑏) = 𝑦))) |
11 | 10 | exbidv 1924 | . . . 4 ⊢ (𝐴 ∈ On → (∃𝑦(𝑋 ∈ 𝑦 ∧ 𝑦 ∈ ( M “ 𝐴)) ↔ ∃𝑦(𝑋 ∈ 𝑦 ∧ ∃𝑏 ∈ 𝐴 ( M ‘𝑏) = 𝑦))) |
12 | fvex 6787 | . . . . . . 7 ⊢ ( M ‘𝑏) ∈ V | |
13 | 12 | clel3 3592 | . . . . . 6 ⊢ (𝑋 ∈ ( M ‘𝑏) ↔ ∃𝑦(𝑦 = ( M ‘𝑏) ∧ 𝑋 ∈ 𝑦)) |
14 | 13 | rexbii 3181 | . . . . 5 ⊢ (∃𝑏 ∈ 𝐴 𝑋 ∈ ( M ‘𝑏) ↔ ∃𝑏 ∈ 𝐴 ∃𝑦(𝑦 = ( M ‘𝑏) ∧ 𝑋 ∈ 𝑦)) |
15 | rexcom4 3233 | . . . . 5 ⊢ (∃𝑏 ∈ 𝐴 ∃𝑦(𝑦 = ( M ‘𝑏) ∧ 𝑋 ∈ 𝑦) ↔ ∃𝑦∃𝑏 ∈ 𝐴 (𝑦 = ( M ‘𝑏) ∧ 𝑋 ∈ 𝑦)) | |
16 | eqcom 2745 | . . . . . . . . 9 ⊢ (𝑦 = ( M ‘𝑏) ↔ ( M ‘𝑏) = 𝑦) | |
17 | 16 | anbi2ci 625 | . . . . . . . 8 ⊢ ((𝑦 = ( M ‘𝑏) ∧ 𝑋 ∈ 𝑦) ↔ (𝑋 ∈ 𝑦 ∧ ( M ‘𝑏) = 𝑦)) |
18 | 17 | rexbii 3181 | . . . . . . 7 ⊢ (∃𝑏 ∈ 𝐴 (𝑦 = ( M ‘𝑏) ∧ 𝑋 ∈ 𝑦) ↔ ∃𝑏 ∈ 𝐴 (𝑋 ∈ 𝑦 ∧ ( M ‘𝑏) = 𝑦)) |
19 | r19.42v 3279 | . . . . . . 7 ⊢ (∃𝑏 ∈ 𝐴 (𝑋 ∈ 𝑦 ∧ ( M ‘𝑏) = 𝑦) ↔ (𝑋 ∈ 𝑦 ∧ ∃𝑏 ∈ 𝐴 ( M ‘𝑏) = 𝑦)) | |
20 | 18, 19 | bitri 274 | . . . . . 6 ⊢ (∃𝑏 ∈ 𝐴 (𝑦 = ( M ‘𝑏) ∧ 𝑋 ∈ 𝑦) ↔ (𝑋 ∈ 𝑦 ∧ ∃𝑏 ∈ 𝐴 ( M ‘𝑏) = 𝑦)) |
21 | 20 | exbii 1850 | . . . . 5 ⊢ (∃𝑦∃𝑏 ∈ 𝐴 (𝑦 = ( M ‘𝑏) ∧ 𝑋 ∈ 𝑦) ↔ ∃𝑦(𝑋 ∈ 𝑦 ∧ ∃𝑏 ∈ 𝐴 ( M ‘𝑏) = 𝑦)) |
22 | 14, 15, 21 | 3bitrri 298 | . . . 4 ⊢ (∃𝑦(𝑋 ∈ 𝑦 ∧ ∃𝑏 ∈ 𝐴 ( M ‘𝑏) = 𝑦) ↔ ∃𝑏 ∈ 𝐴 𝑋 ∈ ( M ‘𝑏)) |
23 | 11, 22 | bitrdi 287 | . . 3 ⊢ (𝐴 ∈ On → (∃𝑦(𝑋 ∈ 𝑦 ∧ 𝑦 ∈ ( M “ 𝐴)) ↔ ∃𝑏 ∈ 𝐴 𝑋 ∈ ( M ‘𝑏))) |
24 | 3, 23 | syl5bb 283 | . 2 ⊢ (𝐴 ∈ On → (𝑋 ∈ ∪ ( M “ 𝐴) ↔ ∃𝑏 ∈ 𝐴 𝑋 ∈ ( M ‘𝑏))) |
25 | 2, 24 | bitrd 278 | 1 ⊢ (𝐴 ∈ On → (𝑋 ∈ ( O ‘𝐴) ↔ ∃𝑏 ∈ 𝐴 𝑋 ∈ ( M ‘𝑏))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∃wex 1782 ∈ wcel 2106 ∃wrex 3065 ⊆ wss 3887 𝒫 cpw 4533 ∪ cuni 4839 “ cima 5592 Oncon0 6266 Fn wfn 6428 ⟶wf 6429 ‘cfv 6433 No csur 33843 M cmade 34026 O cold 34027 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-1o 8297 df-2o 8298 df-no 33846 df-slt 33847 df-bday 33848 df-sslt 33976 df-scut 33978 df-made 34031 df-old 34032 |
This theorem is referenced by: oldssmade 34060 oldlim 34069 madebdayim 34070 oldbdayim 34071 madebdaylemold 34078 |
Copyright terms: Public domain | W3C validator |