MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elold Structured version   Visualization version   GIF version

Theorem elold 27708
Description: Membership in an old set. (Contributed by Scott Fenton, 7-Aug-2024.)
Assertion
Ref Expression
elold (𝐴 ∈ On → (𝑋 ∈ ( O ‘𝐴) ↔ ∃𝑏𝐴 𝑋 ∈ ( M ‘𝑏)))
Distinct variable groups:   𝐴,𝑏   𝑋,𝑏

Proof of Theorem elold
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 oldval 27693 . . 3 (𝐴 ∈ On → ( O ‘𝐴) = ( M “ 𝐴))
21eleq2d 2818 . 2 (𝐴 ∈ On → (𝑋 ∈ ( O ‘𝐴) ↔ 𝑋 ( M “ 𝐴)))
3 eluni 4911 . . 3 (𝑋 ( M “ 𝐴) ↔ ∃𝑦(𝑋𝑦𝑦 ∈ ( M “ 𝐴)))
4 madef 27695 . . . . . . . 8 M :On⟶𝒫 No
5 ffn 6717 . . . . . . . 8 ( M :On⟶𝒫 No → M Fn On)
64, 5ax-mp 5 . . . . . . 7 M Fn On
7 onss 7776 . . . . . . 7 (𝐴 ∈ On → 𝐴 ⊆ On)
8 fvelimab 6964 . . . . . . 7 (( M Fn On ∧ 𝐴 ⊆ On) → (𝑦 ∈ ( M “ 𝐴) ↔ ∃𝑏𝐴 ( M ‘𝑏) = 𝑦))
96, 7, 8sylancr 586 . . . . . 6 (𝐴 ∈ On → (𝑦 ∈ ( M “ 𝐴) ↔ ∃𝑏𝐴 ( M ‘𝑏) = 𝑦))
109anbi2d 628 . . . . 5 (𝐴 ∈ On → ((𝑋𝑦𝑦 ∈ ( M “ 𝐴)) ↔ (𝑋𝑦 ∧ ∃𝑏𝐴 ( M ‘𝑏) = 𝑦)))
1110exbidv 1923 . . . 4 (𝐴 ∈ On → (∃𝑦(𝑋𝑦𝑦 ∈ ( M “ 𝐴)) ↔ ∃𝑦(𝑋𝑦 ∧ ∃𝑏𝐴 ( M ‘𝑏) = 𝑦)))
12 fvex 6904 . . . . . . 7 ( M ‘𝑏) ∈ V
1312clel3 3651 . . . . . 6 (𝑋 ∈ ( M ‘𝑏) ↔ ∃𝑦(𝑦 = ( M ‘𝑏) ∧ 𝑋𝑦))
1413rexbii 3093 . . . . 5 (∃𝑏𝐴 𝑋 ∈ ( M ‘𝑏) ↔ ∃𝑏𝐴𝑦(𝑦 = ( M ‘𝑏) ∧ 𝑋𝑦))
15 rexcom4 3284 . . . . 5 (∃𝑏𝐴𝑦(𝑦 = ( M ‘𝑏) ∧ 𝑋𝑦) ↔ ∃𝑦𝑏𝐴 (𝑦 = ( M ‘𝑏) ∧ 𝑋𝑦))
16 eqcom 2738 . . . . . . . . 9 (𝑦 = ( M ‘𝑏) ↔ ( M ‘𝑏) = 𝑦)
1716anbi2ci 624 . . . . . . . 8 ((𝑦 = ( M ‘𝑏) ∧ 𝑋𝑦) ↔ (𝑋𝑦 ∧ ( M ‘𝑏) = 𝑦))
1817rexbii 3093 . . . . . . 7 (∃𝑏𝐴 (𝑦 = ( M ‘𝑏) ∧ 𝑋𝑦) ↔ ∃𝑏𝐴 (𝑋𝑦 ∧ ( M ‘𝑏) = 𝑦))
19 r19.42v 3189 . . . . . . 7 (∃𝑏𝐴 (𝑋𝑦 ∧ ( M ‘𝑏) = 𝑦) ↔ (𝑋𝑦 ∧ ∃𝑏𝐴 ( M ‘𝑏) = 𝑦))
2018, 19bitri 275 . . . . . 6 (∃𝑏𝐴 (𝑦 = ( M ‘𝑏) ∧ 𝑋𝑦) ↔ (𝑋𝑦 ∧ ∃𝑏𝐴 ( M ‘𝑏) = 𝑦))
2120exbii 1849 . . . . 5 (∃𝑦𝑏𝐴 (𝑦 = ( M ‘𝑏) ∧ 𝑋𝑦) ↔ ∃𝑦(𝑋𝑦 ∧ ∃𝑏𝐴 ( M ‘𝑏) = 𝑦))
2214, 15, 213bitrri 298 . . . 4 (∃𝑦(𝑋𝑦 ∧ ∃𝑏𝐴 ( M ‘𝑏) = 𝑦) ↔ ∃𝑏𝐴 𝑋 ∈ ( M ‘𝑏))
2311, 22bitrdi 287 . . 3 (𝐴 ∈ On → (∃𝑦(𝑋𝑦𝑦 ∈ ( M “ 𝐴)) ↔ ∃𝑏𝐴 𝑋 ∈ ( M ‘𝑏)))
243, 23bitrid 283 . 2 (𝐴 ∈ On → (𝑋 ( M “ 𝐴) ↔ ∃𝑏𝐴 𝑋 ∈ ( M ‘𝑏)))
252, 24bitrd 279 1 (𝐴 ∈ On → (𝑋 ∈ ( O ‘𝐴) ↔ ∃𝑏𝐴 𝑋 ∈ ( M ‘𝑏)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1540  wex 1780  wcel 2105  wrex 3069  wss 3948  𝒫 cpw 4602   cuni 4908  cima 5679  Oncon0 6364   Fn wfn 6538  wf 6539  cfv 6543   No csur 27485   M cmade 27681   O cold 27682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-1o 8472  df-2o 8473  df-no 27488  df-slt 27489  df-bday 27490  df-sslt 27626  df-scut 27628  df-made 27686  df-old 27687
This theorem is referenced by:  oldssmade  27716  oldlim  27725  madebdayim  27726  oldbdayim  27727  madebdaylemold  27736
  Copyright terms: Public domain W3C validator