MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elold Structured version   Visualization version   GIF version

Theorem elold 27923
Description: Membership in an old set. (Contributed by Scott Fenton, 7-Aug-2024.)
Assertion
Ref Expression
elold (𝐴 ∈ On → (𝑋 ∈ ( O ‘𝐴) ↔ ∃𝑏𝐴 𝑋 ∈ ( M ‘𝑏)))
Distinct variable groups:   𝐴,𝑏   𝑋,𝑏

Proof of Theorem elold
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 oldval 27908 . . 3 (𝐴 ∈ On → ( O ‘𝐴) = ( M “ 𝐴))
21eleq2d 2825 . 2 (𝐴 ∈ On → (𝑋 ∈ ( O ‘𝐴) ↔ 𝑋 ( M “ 𝐴)))
3 eluni 4915 . . 3 (𝑋 ( M “ 𝐴) ↔ ∃𝑦(𝑋𝑦𝑦 ∈ ( M “ 𝐴)))
4 madef 27910 . . . . . . . 8 M :On⟶𝒫 No
5 ffn 6737 . . . . . . . 8 ( M :On⟶𝒫 No → M Fn On)
64, 5ax-mp 5 . . . . . . 7 M Fn On
7 onss 7804 . . . . . . 7 (𝐴 ∈ On → 𝐴 ⊆ On)
8 fvelimab 6981 . . . . . . 7 (( M Fn On ∧ 𝐴 ⊆ On) → (𝑦 ∈ ( M “ 𝐴) ↔ ∃𝑏𝐴 ( M ‘𝑏) = 𝑦))
96, 7, 8sylancr 587 . . . . . 6 (𝐴 ∈ On → (𝑦 ∈ ( M “ 𝐴) ↔ ∃𝑏𝐴 ( M ‘𝑏) = 𝑦))
109anbi2d 630 . . . . 5 (𝐴 ∈ On → ((𝑋𝑦𝑦 ∈ ( M “ 𝐴)) ↔ (𝑋𝑦 ∧ ∃𝑏𝐴 ( M ‘𝑏) = 𝑦)))
1110exbidv 1919 . . . 4 (𝐴 ∈ On → (∃𝑦(𝑋𝑦𝑦 ∈ ( M “ 𝐴)) ↔ ∃𝑦(𝑋𝑦 ∧ ∃𝑏𝐴 ( M ‘𝑏) = 𝑦)))
12 fvex 6920 . . . . . . 7 ( M ‘𝑏) ∈ V
1312clel3 3662 . . . . . 6 (𝑋 ∈ ( M ‘𝑏) ↔ ∃𝑦(𝑦 = ( M ‘𝑏) ∧ 𝑋𝑦))
1413rexbii 3092 . . . . 5 (∃𝑏𝐴 𝑋 ∈ ( M ‘𝑏) ↔ ∃𝑏𝐴𝑦(𝑦 = ( M ‘𝑏) ∧ 𝑋𝑦))
15 rexcom4 3286 . . . . 5 (∃𝑏𝐴𝑦(𝑦 = ( M ‘𝑏) ∧ 𝑋𝑦) ↔ ∃𝑦𝑏𝐴 (𝑦 = ( M ‘𝑏) ∧ 𝑋𝑦))
16 eqcom 2742 . . . . . . . . 9 (𝑦 = ( M ‘𝑏) ↔ ( M ‘𝑏) = 𝑦)
1716anbi2ci 625 . . . . . . . 8 ((𝑦 = ( M ‘𝑏) ∧ 𝑋𝑦) ↔ (𝑋𝑦 ∧ ( M ‘𝑏) = 𝑦))
1817rexbii 3092 . . . . . . 7 (∃𝑏𝐴 (𝑦 = ( M ‘𝑏) ∧ 𝑋𝑦) ↔ ∃𝑏𝐴 (𝑋𝑦 ∧ ( M ‘𝑏) = 𝑦))
19 r19.42v 3189 . . . . . . 7 (∃𝑏𝐴 (𝑋𝑦 ∧ ( M ‘𝑏) = 𝑦) ↔ (𝑋𝑦 ∧ ∃𝑏𝐴 ( M ‘𝑏) = 𝑦))
2018, 19bitri 275 . . . . . 6 (∃𝑏𝐴 (𝑦 = ( M ‘𝑏) ∧ 𝑋𝑦) ↔ (𝑋𝑦 ∧ ∃𝑏𝐴 ( M ‘𝑏) = 𝑦))
2120exbii 1845 . . . . 5 (∃𝑦𝑏𝐴 (𝑦 = ( M ‘𝑏) ∧ 𝑋𝑦) ↔ ∃𝑦(𝑋𝑦 ∧ ∃𝑏𝐴 ( M ‘𝑏) = 𝑦))
2214, 15, 213bitrri 298 . . . 4 (∃𝑦(𝑋𝑦 ∧ ∃𝑏𝐴 ( M ‘𝑏) = 𝑦) ↔ ∃𝑏𝐴 𝑋 ∈ ( M ‘𝑏))
2311, 22bitrdi 287 . . 3 (𝐴 ∈ On → (∃𝑦(𝑋𝑦𝑦 ∈ ( M “ 𝐴)) ↔ ∃𝑏𝐴 𝑋 ∈ ( M ‘𝑏)))
243, 23bitrid 283 . 2 (𝐴 ∈ On → (𝑋 ( M “ 𝐴) ↔ ∃𝑏𝐴 𝑋 ∈ ( M ‘𝑏)))
252, 24bitrd 279 1 (𝐴 ∈ On → (𝑋 ∈ ( O ‘𝐴) ↔ ∃𝑏𝐴 𝑋 ∈ ( M ‘𝑏)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wex 1776  wcel 2106  wrex 3068  wss 3963  𝒫 cpw 4605   cuni 4912  cima 5692  Oncon0 6386   Fn wfn 6558  wf 6559  cfv 6563   No csur 27699   M cmade 27896   O cold 27897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-1o 8505  df-2o 8506  df-no 27702  df-slt 27703  df-bday 27704  df-sslt 27841  df-scut 27843  df-made 27901  df-old 27902
This theorem is referenced by:  oldssmade  27931  oldlim  27940  madebdayim  27941  oldbdayim  27942  madebdaylemold  27951
  Copyright terms: Public domain W3C validator