![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elold | Structured version Visualization version GIF version |
Description: Membership in an old set. (Contributed by Scott Fenton, 7-Aug-2024.) |
Ref | Expression |
---|---|
elold | ⊢ (𝐴 ∈ On → (𝑋 ∈ ( O ‘𝐴) ↔ ∃𝑏 ∈ 𝐴 𝑋 ∈ ( M ‘𝑏))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oldval 27184 | . . 3 ⊢ (𝐴 ∈ On → ( O ‘𝐴) = ∪ ( M “ 𝐴)) | |
2 | 1 | eleq2d 2823 | . 2 ⊢ (𝐴 ∈ On → (𝑋 ∈ ( O ‘𝐴) ↔ 𝑋 ∈ ∪ ( M “ 𝐴))) |
3 | eluni 4868 | . . 3 ⊢ (𝑋 ∈ ∪ ( M “ 𝐴) ↔ ∃𝑦(𝑋 ∈ 𝑦 ∧ 𝑦 ∈ ( M “ 𝐴))) | |
4 | madef 27186 | . . . . . . . 8 ⊢ M :On⟶𝒫 No | |
5 | ffn 6668 | . . . . . . . 8 ⊢ ( M :On⟶𝒫 No → M Fn On) | |
6 | 4, 5 | ax-mp 5 | . . . . . . 7 ⊢ M Fn On |
7 | onss 7719 | . . . . . . 7 ⊢ (𝐴 ∈ On → 𝐴 ⊆ On) | |
8 | fvelimab 6914 | . . . . . . 7 ⊢ (( M Fn On ∧ 𝐴 ⊆ On) → (𝑦 ∈ ( M “ 𝐴) ↔ ∃𝑏 ∈ 𝐴 ( M ‘𝑏) = 𝑦)) | |
9 | 6, 7, 8 | sylancr 587 | . . . . . 6 ⊢ (𝐴 ∈ On → (𝑦 ∈ ( M “ 𝐴) ↔ ∃𝑏 ∈ 𝐴 ( M ‘𝑏) = 𝑦)) |
10 | 9 | anbi2d 629 | . . . . 5 ⊢ (𝐴 ∈ On → ((𝑋 ∈ 𝑦 ∧ 𝑦 ∈ ( M “ 𝐴)) ↔ (𝑋 ∈ 𝑦 ∧ ∃𝑏 ∈ 𝐴 ( M ‘𝑏) = 𝑦))) |
11 | 10 | exbidv 1924 | . . . 4 ⊢ (𝐴 ∈ On → (∃𝑦(𝑋 ∈ 𝑦 ∧ 𝑦 ∈ ( M “ 𝐴)) ↔ ∃𝑦(𝑋 ∈ 𝑦 ∧ ∃𝑏 ∈ 𝐴 ( M ‘𝑏) = 𝑦))) |
12 | fvex 6855 | . . . . . . 7 ⊢ ( M ‘𝑏) ∈ V | |
13 | 12 | clel3 3613 | . . . . . 6 ⊢ (𝑋 ∈ ( M ‘𝑏) ↔ ∃𝑦(𝑦 = ( M ‘𝑏) ∧ 𝑋 ∈ 𝑦)) |
14 | 13 | rexbii 3097 | . . . . 5 ⊢ (∃𝑏 ∈ 𝐴 𝑋 ∈ ( M ‘𝑏) ↔ ∃𝑏 ∈ 𝐴 ∃𝑦(𝑦 = ( M ‘𝑏) ∧ 𝑋 ∈ 𝑦)) |
15 | rexcom4 3271 | . . . . 5 ⊢ (∃𝑏 ∈ 𝐴 ∃𝑦(𝑦 = ( M ‘𝑏) ∧ 𝑋 ∈ 𝑦) ↔ ∃𝑦∃𝑏 ∈ 𝐴 (𝑦 = ( M ‘𝑏) ∧ 𝑋 ∈ 𝑦)) | |
16 | eqcom 2743 | . . . . . . . . 9 ⊢ (𝑦 = ( M ‘𝑏) ↔ ( M ‘𝑏) = 𝑦) | |
17 | 16 | anbi2ci 625 | . . . . . . . 8 ⊢ ((𝑦 = ( M ‘𝑏) ∧ 𝑋 ∈ 𝑦) ↔ (𝑋 ∈ 𝑦 ∧ ( M ‘𝑏) = 𝑦)) |
18 | 17 | rexbii 3097 | . . . . . . 7 ⊢ (∃𝑏 ∈ 𝐴 (𝑦 = ( M ‘𝑏) ∧ 𝑋 ∈ 𝑦) ↔ ∃𝑏 ∈ 𝐴 (𝑋 ∈ 𝑦 ∧ ( M ‘𝑏) = 𝑦)) |
19 | r19.42v 3187 | . . . . . . 7 ⊢ (∃𝑏 ∈ 𝐴 (𝑋 ∈ 𝑦 ∧ ( M ‘𝑏) = 𝑦) ↔ (𝑋 ∈ 𝑦 ∧ ∃𝑏 ∈ 𝐴 ( M ‘𝑏) = 𝑦)) | |
20 | 18, 19 | bitri 274 | . . . . . 6 ⊢ (∃𝑏 ∈ 𝐴 (𝑦 = ( M ‘𝑏) ∧ 𝑋 ∈ 𝑦) ↔ (𝑋 ∈ 𝑦 ∧ ∃𝑏 ∈ 𝐴 ( M ‘𝑏) = 𝑦)) |
21 | 20 | exbii 1850 | . . . . 5 ⊢ (∃𝑦∃𝑏 ∈ 𝐴 (𝑦 = ( M ‘𝑏) ∧ 𝑋 ∈ 𝑦) ↔ ∃𝑦(𝑋 ∈ 𝑦 ∧ ∃𝑏 ∈ 𝐴 ( M ‘𝑏) = 𝑦)) |
22 | 14, 15, 21 | 3bitrri 297 | . . . 4 ⊢ (∃𝑦(𝑋 ∈ 𝑦 ∧ ∃𝑏 ∈ 𝐴 ( M ‘𝑏) = 𝑦) ↔ ∃𝑏 ∈ 𝐴 𝑋 ∈ ( M ‘𝑏)) |
23 | 11, 22 | bitrdi 286 | . . 3 ⊢ (𝐴 ∈ On → (∃𝑦(𝑋 ∈ 𝑦 ∧ 𝑦 ∈ ( M “ 𝐴)) ↔ ∃𝑏 ∈ 𝐴 𝑋 ∈ ( M ‘𝑏))) |
24 | 3, 23 | bitrid 282 | . 2 ⊢ (𝐴 ∈ On → (𝑋 ∈ ∪ ( M “ 𝐴) ↔ ∃𝑏 ∈ 𝐴 𝑋 ∈ ( M ‘𝑏))) |
25 | 2, 24 | bitrd 278 | 1 ⊢ (𝐴 ∈ On → (𝑋 ∈ ( O ‘𝐴) ↔ ∃𝑏 ∈ 𝐴 𝑋 ∈ ( M ‘𝑏))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∃wex 1781 ∈ wcel 2106 ∃wrex 3073 ⊆ wss 3910 𝒫 cpw 4560 ∪ cuni 4865 “ cima 5636 Oncon0 6317 Fn wfn 6491 ⟶wf 6492 ‘cfv 6496 No csur 26988 M cmade 27172 O cold 27173 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-tp 4591 df-op 4593 df-uni 4866 df-int 4908 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-2nd 7922 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-1o 8412 df-2o 8413 df-no 26991 df-slt 26992 df-bday 26993 df-sslt 27121 df-scut 27123 df-made 27177 df-old 27178 |
This theorem is referenced by: oldssmade 27207 oldlim 27216 madebdayim 27217 oldbdayim 27218 madebdaylemold 27227 |
Copyright terms: Public domain | W3C validator |