Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elold Structured version   Visualization version   GIF version

Theorem elold 33643
Description: Membership in an old set. (Contributed by Scott Fenton, 7-Aug-2024.)
Assertion
Ref Expression
elold (𝐴 ∈ On → (𝑋 ∈ ( O ‘𝐴) ↔ ∃𝑏𝐴 𝑋 ∈ ( M ‘𝑏)))
Distinct variable groups:   𝐴,𝑏   𝑋,𝑏

Proof of Theorem elold
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 oldval 33632 . . 3 (𝐴 ∈ On → ( O ‘𝐴) = ( M “ 𝐴))
21eleq2d 2837 . 2 (𝐴 ∈ On → (𝑋 ∈ ( O ‘𝐴) ↔ 𝑋 ( M “ 𝐴)))
3 eluni 4804 . . 3 (𝑋 ( M “ 𝐴) ↔ ∃𝑦(𝑋𝑦𝑦 ∈ ( M “ 𝐴)))
4 madef 33634 . . . . . . . 8 M :On⟶𝒫 No
5 ffn 6503 . . . . . . . 8 ( M :On⟶𝒫 No → M Fn On)
64, 5ax-mp 5 . . . . . . 7 M Fn On
7 onss 7510 . . . . . . 7 (𝐴 ∈ On → 𝐴 ⊆ On)
8 fvelimab 6730 . . . . . . 7 (( M Fn On ∧ 𝐴 ⊆ On) → (𝑦 ∈ ( M “ 𝐴) ↔ ∃𝑏𝐴 ( M ‘𝑏) = 𝑦))
96, 7, 8sylancr 590 . . . . . 6 (𝐴 ∈ On → (𝑦 ∈ ( M “ 𝐴) ↔ ∃𝑏𝐴 ( M ‘𝑏) = 𝑦))
109anbi2d 631 . . . . 5 (𝐴 ∈ On → ((𝑋𝑦𝑦 ∈ ( M “ 𝐴)) ↔ (𝑋𝑦 ∧ ∃𝑏𝐴 ( M ‘𝑏) = 𝑦)))
1110exbidv 1922 . . . 4 (𝐴 ∈ On → (∃𝑦(𝑋𝑦𝑦 ∈ ( M “ 𝐴)) ↔ ∃𝑦(𝑋𝑦 ∧ ∃𝑏𝐴 ( M ‘𝑏) = 𝑦)))
12 fvex 6676 . . . . . . 7 ( M ‘𝑏) ∈ V
1312clel3 3576 . . . . . 6 (𝑋 ∈ ( M ‘𝑏) ↔ ∃𝑦(𝑦 = ( M ‘𝑏) ∧ 𝑋𝑦))
1413rexbii 3175 . . . . 5 (∃𝑏𝐴 𝑋 ∈ ( M ‘𝑏) ↔ ∃𝑏𝐴𝑦(𝑦 = ( M ‘𝑏) ∧ 𝑋𝑦))
15 rexcom4 3177 . . . . 5 (∃𝑏𝐴𝑦(𝑦 = ( M ‘𝑏) ∧ 𝑋𝑦) ↔ ∃𝑦𝑏𝐴 (𝑦 = ( M ‘𝑏) ∧ 𝑋𝑦))
16 eqcom 2765 . . . . . . . . 9 (𝑦 = ( M ‘𝑏) ↔ ( M ‘𝑏) = 𝑦)
1716anbi2ci 627 . . . . . . . 8 ((𝑦 = ( M ‘𝑏) ∧ 𝑋𝑦) ↔ (𝑋𝑦 ∧ ( M ‘𝑏) = 𝑦))
1817rexbii 3175 . . . . . . 7 (∃𝑏𝐴 (𝑦 = ( M ‘𝑏) ∧ 𝑋𝑦) ↔ ∃𝑏𝐴 (𝑋𝑦 ∧ ( M ‘𝑏) = 𝑦))
19 r19.42v 3268 . . . . . . 7 (∃𝑏𝐴 (𝑋𝑦 ∧ ( M ‘𝑏) = 𝑦) ↔ (𝑋𝑦 ∧ ∃𝑏𝐴 ( M ‘𝑏) = 𝑦))
2018, 19bitri 278 . . . . . 6 (∃𝑏𝐴 (𝑦 = ( M ‘𝑏) ∧ 𝑋𝑦) ↔ (𝑋𝑦 ∧ ∃𝑏𝐴 ( M ‘𝑏) = 𝑦))
2120exbii 1849 . . . . 5 (∃𝑦𝑏𝐴 (𝑦 = ( M ‘𝑏) ∧ 𝑋𝑦) ↔ ∃𝑦(𝑋𝑦 ∧ ∃𝑏𝐴 ( M ‘𝑏) = 𝑦))
2214, 15, 213bitrri 301 . . . 4 (∃𝑦(𝑋𝑦 ∧ ∃𝑏𝐴 ( M ‘𝑏) = 𝑦) ↔ ∃𝑏𝐴 𝑋 ∈ ( M ‘𝑏))
2311, 22bitrdi 290 . . 3 (𝐴 ∈ On → (∃𝑦(𝑋𝑦𝑦 ∈ ( M “ 𝐴)) ↔ ∃𝑏𝐴 𝑋 ∈ ( M ‘𝑏)))
243, 23syl5bb 286 . 2 (𝐴 ∈ On → (𝑋 ( M “ 𝐴) ↔ ∃𝑏𝐴 𝑋 ∈ ( M ‘𝑏)))
252, 24bitrd 282 1 (𝐴 ∈ On → (𝑋 ∈ ( O ‘𝐴) ↔ ∃𝑏𝐴 𝑋 ∈ ( M ‘𝑏)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wex 1781  wcel 2111  wrex 3071  wss 3860  𝒫 cpw 4497   cuni 4801  cima 5531  Oncon0 6174   Fn wfn 6335  wf 6336  cfv 6340   No csur 33440   M cmade 33620   O cold 33621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-wrecs 7963  df-recs 8024  df-1o 8118  df-2o 8119  df-no 33443  df-slt 33444  df-bday 33445  df-sslt 33573  df-scut 33575  df-made 33625  df-old 33626
This theorem is referenced by:  oldssmade  33651  oldlim  33660  madebdayim  33661  oldbdayim  33662  madebdaylemold  33669
  Copyright terms: Public domain W3C validator