![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ceqsexgv | Structured version Visualization version GIF version |
Description: Elimination of an existential quantifier, using implicit substitution. (Contributed by NM, 29-Dec-1996.) Drop ax-10 2129 and ax-12 2166. (Revised by Gino Giotto, 1-Dec-2023.) |
Ref | Expression |
---|---|
ceqsexgv.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ceqsexgv | ⊢ (𝐴 ∈ 𝑉 → (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
2 | ceqsexgv.1 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | 1, 2 | cgsexg 3518 | 1 ⊢ (𝐴 ∈ 𝑉 → (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∃wex 1773 ∈ wcel 2098 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2706 df-clel 2806 |
This theorem is referenced by: ceqsrexv 3643 clel3g 3650 elxp5 7937 xpsnen 9086 isssc 17810 metuel2 24494 isgrpo 30327 bj-finsumval0 36797 ismgmOLD 37356 brxrn 37878 pmapjat1 39358 dfatdmfcoafv2 46663 |
Copyright terms: Public domain | W3C validator |