MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ceqsexgv Structured version   Visualization version   GIF version

Theorem ceqsexgv 3667
Description: Elimination of an existential quantifier, using implicit substitution. (Contributed by NM, 29-Dec-1996.) Drop ax-10 2141 and ax-12 2178. (Revised by GG, 1-Dec-2023.)
Hypothesis
Ref Expression
ceqsexgv.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
ceqsexgv (𝐴𝑉 → (∃𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
Distinct variable groups:   𝑥,𝐴   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)

Proof of Theorem ceqsexgv
StepHypRef Expression
1 id 22 . 2 (𝑥 = 𝐴𝑥 = 𝐴)
2 ceqsexgv.1 . 2 (𝑥 = 𝐴 → (𝜑𝜓))
31, 2cgsexg 3536 1 (𝐴𝑉 → (∃𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wex 1777  wcel 2108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-clel 2819
This theorem is referenced by:  ceqsrexv  3668  clel3g  3674  elxp5  7963  xpsnen  9121  isssc  17881  metuel2  24599  isgrpo  30529  bj-finsumval0  37251  ismgmOLD  37810  brxrn  38330  pmapjat1  39810  dfatdmfcoafv2  47169
  Copyright terms: Public domain W3C validator