![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ceqsexgv | Structured version Visualization version GIF version |
Description: Elimination of an existential quantifier, using implicit substitution. (Contributed by NM, 29-Dec-1996.) Drop ax-10 2137 and ax-12 2171. (Revised by Gino Giotto, 1-Dec-2023.) |
Ref | Expression |
---|---|
ceqsexgv.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ceqsexgv | ⊢ (𝐴 ∈ 𝑉 → (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
2 | ceqsexgv.1 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | 1, 2 | cgsexg 3518 | 1 ⊢ (𝐴 ∈ 𝑉 → (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∃wex 1781 ∈ wcel 2106 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-clel 2810 |
This theorem is referenced by: ceqsrexv 3643 clel3g 3650 elxp5 7916 xpsnen 9057 isssc 17769 metuel2 24081 isgrpo 29788 bj-finsumval0 36252 ismgmOLD 36804 brxrn 37330 pmapjat1 38810 dfatdmfcoafv2 46041 |
Copyright terms: Public domain | W3C validator |