MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfiun2gOLD Structured version   Visualization version   GIF version

Theorem dfiun2gOLD 5038
Description: Obsolete version of dfiun2g 5037 as of 11-Dec-2024. (Contributed by NM, 23-Mar-2006.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) (Proof shortened by Rohan Ridenour, 11-Aug-2023.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
dfiun2gOLD (∀𝑥𝐴 𝐵𝐶 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵})
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥,𝑦)

Proof of Theorem dfiun2gOLD
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nfra1 3279 . . . . . 6 𝑥𝑥𝐴 𝐵𝐶
2 rspa 3243 . . . . . . 7 ((∀𝑥𝐴 𝐵𝐶𝑥𝐴) → 𝐵𝐶)
3 clel3g 3650 . . . . . . 7 (𝐵𝐶 → (𝑧𝐵 ↔ ∃𝑦(𝑦 = 𝐵𝑧𝑦)))
42, 3syl 17 . . . . . 6 ((∀𝑥𝐴 𝐵𝐶𝑥𝐴) → (𝑧𝐵 ↔ ∃𝑦(𝑦 = 𝐵𝑧𝑦)))
51, 4rexbida 3267 . . . . 5 (∀𝑥𝐴 𝐵𝐶 → (∃𝑥𝐴 𝑧𝐵 ↔ ∃𝑥𝐴𝑦(𝑦 = 𝐵𝑧𝑦)))
6 rexcom4 3283 . . . . 5 (∃𝑥𝐴𝑦(𝑦 = 𝐵𝑧𝑦) ↔ ∃𝑦𝑥𝐴 (𝑦 = 𝐵𝑧𝑦))
75, 6bitrdi 286 . . . 4 (∀𝑥𝐴 𝐵𝐶 → (∃𝑥𝐴 𝑧𝐵 ↔ ∃𝑦𝑥𝐴 (𝑦 = 𝐵𝑧𝑦)))
8 r19.41v 3186 . . . . . 6 (∃𝑥𝐴 (𝑦 = 𝐵𝑧𝑦) ↔ (∃𝑥𝐴 𝑦 = 𝐵𝑧𝑦))
98exbii 1842 . . . . 5 (∃𝑦𝑥𝐴 (𝑦 = 𝐵𝑧𝑦) ↔ ∃𝑦(∃𝑥𝐴 𝑦 = 𝐵𝑧𝑦))
10 exancom 1856 . . . . 5 (∃𝑦(∃𝑥𝐴 𝑦 = 𝐵𝑧𝑦) ↔ ∃𝑦(𝑧𝑦 ∧ ∃𝑥𝐴 𝑦 = 𝐵))
119, 10bitri 274 . . . 4 (∃𝑦𝑥𝐴 (𝑦 = 𝐵𝑧𝑦) ↔ ∃𝑦(𝑧𝑦 ∧ ∃𝑥𝐴 𝑦 = 𝐵))
127, 11bitrdi 286 . . 3 (∀𝑥𝐴 𝐵𝐶 → (∃𝑥𝐴 𝑧𝐵 ↔ ∃𝑦(𝑧𝑦 ∧ ∃𝑥𝐴 𝑦 = 𝐵)))
13 eliun 5004 . . 3 (𝑧 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 𝑧𝐵)
14 eluniab 4926 . . 3 (𝑧 {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ↔ ∃𝑦(𝑧𝑦 ∧ ∃𝑥𝐴 𝑦 = 𝐵))
1512, 13, 143bitr4g 313 . 2 (∀𝑥𝐴 𝐵𝐶 → (𝑧 𝑥𝐴 𝐵𝑧 {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}))
1615eqrdv 2726 1 (∀𝑥𝐴 𝐵𝐶 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wex 1773  wcel 2098  {cab 2705  wral 3058  wrex 3067   cuni 4912   ciun 5000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-tru 1536  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2706  df-cleq 2720  df-clel 2806  df-ral 3059  df-rex 3068  df-v 3475  df-uni 4913  df-iun 5002
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator