Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  conss1 Structured version   Visualization version   GIF version

Theorem conss1 44476
Description: Contrapositive law for subsets. (Contributed by Andrew Salmon, 15-Jul-2011.)
Assertion
Ref Expression
conss1 ((V ∖ 𝐴) ⊆ 𝐵 ↔ (V ∖ 𝐵) ⊆ 𝐴)

Proof of Theorem conss1
StepHypRef Expression
1 difcom 4434 1 ((V ∖ 𝐴) ⊆ 𝐵 ↔ (V ∖ 𝐵) ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206  Vcvv 3436  cdif 3894  wss 3897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator