Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  conss1 Structured version   Visualization version   GIF version

Theorem conss1 44406
Description: Contrapositive law for subsets. (Contributed by Andrew Salmon, 15-Jul-2011.)
Assertion
Ref Expression
conss1 ((V ∖ 𝐴) ⊆ 𝐵 ↔ (V ∖ 𝐵) ⊆ 𝐴)

Proof of Theorem conss1
StepHypRef Expression
1 difcom 4448 1 ((V ∖ 𝐴) ⊆ 𝐵 ↔ (V ∖ 𝐵) ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206  Vcvv 3444  cdif 3908  wss 3911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator