| Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > conss1 | Structured version Visualization version GIF version | ||
| Description: Contrapositive law for subsets. (Contributed by Andrew Salmon, 15-Jul-2011.) |
| Ref | Expression |
|---|---|
| conss1 | ⊢ ((V ∖ 𝐴) ⊆ 𝐵 ↔ (V ∖ 𝐵) ⊆ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difcom 4455 | 1 ⊢ ((V ∖ 𝐴) ⊆ 𝐵 ↔ (V ∖ 𝐵) ⊆ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 Vcvv 3450 ∖ cdif 3914 ⊆ wss 3917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |