| Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > conss2 | Structured version Visualization version GIF version | ||
| Description: Contrapositive law for subsets. (Contributed by Andrew Salmon, 15-Jul-2011.) |
| Ref | Expression |
|---|---|
| conss2 | ⊢ (𝐴 ⊆ (V ∖ 𝐵) ↔ 𝐵 ⊆ (V ∖ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssv 3959 | . 2 ⊢ 𝐴 ⊆ V | |
| 2 | ssv 3959 | . 2 ⊢ 𝐵 ⊆ V | |
| 3 | ssconb 4092 | . 2 ⊢ ((𝐴 ⊆ V ∧ 𝐵 ⊆ V) → (𝐴 ⊆ (V ∖ 𝐵) ↔ 𝐵 ⊆ (V ∖ 𝐴))) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 ⊆ (V ∖ 𝐵) ↔ 𝐵 ⊆ (V ∖ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 Vcvv 3436 ∖ cdif 3899 ⊆ wss 3902 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-dif 3905 df-ss 3919 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |