Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  conss2 Structured version   Visualization version   GIF version

Theorem conss2 44425
Description: Contrapositive law for subsets. (Contributed by Andrew Salmon, 15-Jul-2011.)
Assertion
Ref Expression
conss2 (𝐴 ⊆ (V ∖ 𝐵) ↔ 𝐵 ⊆ (V ∖ 𝐴))

Proof of Theorem conss2
StepHypRef Expression
1 ssv 3973 . 2 𝐴 ⊆ V
2 ssv 3973 . 2 𝐵 ⊆ V
3 ssconb 4107 . 2 ((𝐴 ⊆ V ∧ 𝐵 ⊆ V) → (𝐴 ⊆ (V ∖ 𝐵) ↔ 𝐵 ⊆ (V ∖ 𝐴)))
41, 2, 3mp2an 692 1 (𝐴 ⊆ (V ∖ 𝐵) ↔ 𝐵 ⊆ (V ∖ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 206  Vcvv 3450  cdif 3913  wss 3916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3452  df-dif 3919  df-ss 3933
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator