| Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > conss2 | Structured version Visualization version GIF version | ||
| Description: Contrapositive law for subsets. (Contributed by Andrew Salmon, 15-Jul-2011.) |
| Ref | Expression |
|---|---|
| conss2 | ⊢ (𝐴 ⊆ (V ∖ 𝐵) ↔ 𝐵 ⊆ (V ∖ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssv 3973 | . 2 ⊢ 𝐴 ⊆ V | |
| 2 | ssv 3973 | . 2 ⊢ 𝐵 ⊆ V | |
| 3 | ssconb 4107 | . 2 ⊢ ((𝐴 ⊆ V ∧ 𝐵 ⊆ V) → (𝐴 ⊆ (V ∖ 𝐵) ↔ 𝐵 ⊆ (V ∖ 𝐴))) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 ⊆ (V ∖ 𝐵) ↔ 𝐵 ⊆ (V ∖ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 Vcvv 3450 ∖ cdif 3913 ⊆ wss 3916 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-dif 3919 df-ss 3933 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |