Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  conss2 Structured version   Visualization version   GIF version

Theorem conss2 41950
Description: Contrapositive law for subsets. (Contributed by Andrew Salmon, 15-Jul-2011.)
Assertion
Ref Expression
conss2 (𝐴 ⊆ (V ∖ 𝐵) ↔ 𝐵 ⊆ (V ∖ 𝐴))

Proof of Theorem conss2
StepHypRef Expression
1 ssv 3941 . 2 𝐴 ⊆ V
2 ssv 3941 . 2 𝐵 ⊆ V
3 ssconb 4068 . 2 ((𝐴 ⊆ V ∧ 𝐵 ⊆ V) → (𝐴 ⊆ (V ∖ 𝐵) ↔ 𝐵 ⊆ (V ∖ 𝐴)))
41, 2, 3mp2an 688 1 (𝐴 ⊆ (V ∖ 𝐵) ↔ 𝐵 ⊆ (V ∖ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 205  Vcvv 3422  cdif 3880  wss 3883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-dif 3886  df-in 3890  df-ss 3900
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator