MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difcom Structured version   Visualization version   GIF version

Theorem difcom 4495
Description: Swap the arguments of a class difference. (Contributed by NM, 29-Mar-2007.)
Assertion
Ref Expression
difcom ((𝐴𝐵) ⊆ 𝐶 ↔ (𝐴𝐶) ⊆ 𝐵)

Proof of Theorem difcom
StepHypRef Expression
1 uncom 4168 . . 3 (𝐵𝐶) = (𝐶𝐵)
21sseq2i 4025 . 2 (𝐴 ⊆ (𝐵𝐶) ↔ 𝐴 ⊆ (𝐶𝐵))
3 ssundif 4494 . 2 (𝐴 ⊆ (𝐵𝐶) ↔ (𝐴𝐵) ⊆ 𝐶)
4 ssundif 4494 . 2 (𝐴 ⊆ (𝐶𝐵) ↔ (𝐴𝐶) ⊆ 𝐵)
52, 3, 43bitr3i 301 1 ((𝐴𝐵) ⊆ 𝐶 ↔ (𝐴𝐶) ⊆ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 206  cdif 3960  cun 3961  wss 3963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1540  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980
This theorem is referenced by:  pssdifcom1  4496  pssdifcom2  4497  isreg2  23401  restmetu  24599  conss1  44440  icccncfext  45843
  Copyright terms: Public domain W3C validator