Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > difcom | Structured version Visualization version GIF version |
Description: Swap the arguments of a class difference. (Contributed by NM, 29-Mar-2007.) |
Ref | Expression |
---|---|
difcom | ⊢ ((𝐴 ∖ 𝐵) ⊆ 𝐶 ↔ (𝐴 ∖ 𝐶) ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uncom 4100 | . . 3 ⊢ (𝐵 ∪ 𝐶) = (𝐶 ∪ 𝐵) | |
2 | 1 | sseq2i 3961 | . 2 ⊢ (𝐴 ⊆ (𝐵 ∪ 𝐶) ↔ 𝐴 ⊆ (𝐶 ∪ 𝐵)) |
3 | ssundif 4432 | . 2 ⊢ (𝐴 ⊆ (𝐵 ∪ 𝐶) ↔ (𝐴 ∖ 𝐵) ⊆ 𝐶) | |
4 | ssundif 4432 | . 2 ⊢ (𝐴 ⊆ (𝐶 ∪ 𝐵) ↔ (𝐴 ∖ 𝐶) ⊆ 𝐵) | |
5 | 2, 3, 4 | 3bitr3i 300 | 1 ⊢ ((𝐴 ∖ 𝐵) ⊆ 𝐶 ↔ (𝐴 ∖ 𝐶) ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∖ cdif 3895 ∪ cun 3896 ⊆ wss 3898 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 |
This theorem is referenced by: pssdifcom1 4434 pssdifcom2 4435 isreg2 22634 restmetu 23832 conss1 42391 icccncfext 43772 |
Copyright terms: Public domain | W3C validator |