MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difcom Structured version   Visualization version   GIF version

Theorem difcom 4460
Description: Swap the arguments of a class difference. (Contributed by NM, 29-Mar-2007.)
Assertion
Ref Expression
difcom ((𝐴𝐵) ⊆ 𝐶 ↔ (𝐴𝐶) ⊆ 𝐵)

Proof of Theorem difcom
StepHypRef Expression
1 uncom 4129 . . 3 (𝐵𝐶) = (𝐶𝐵)
21sseq2i 3984 . 2 (𝐴 ⊆ (𝐵𝐶) ↔ 𝐴 ⊆ (𝐶𝐵))
3 ssundif 4459 . 2 (𝐴 ⊆ (𝐵𝐶) ↔ (𝐴𝐵) ⊆ 𝐶)
4 ssundif 4459 . 2 (𝐴 ⊆ (𝐶𝐵) ↔ (𝐴𝐶) ⊆ 𝐵)
52, 3, 43bitr3i 301 1 ((𝐴𝐵) ⊆ 𝐶 ↔ (𝐴𝐶) ⊆ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 206  cdif 3919  cun 3920  wss 3922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3457  df-dif 3925  df-un 3927  df-ss 3939
This theorem is referenced by:  pssdifcom1  4461  pssdifcom2  4462  isreg2  23270  restmetu  24464  conss1  44405  icccncfext  45858
  Copyright terms: Public domain W3C validator