| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difcom | Structured version Visualization version GIF version | ||
| Description: Swap the arguments of a class difference. (Contributed by NM, 29-Mar-2007.) |
| Ref | Expression |
|---|---|
| difcom | ⊢ ((𝐴 ∖ 𝐵) ⊆ 𝐶 ↔ (𝐴 ∖ 𝐶) ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uncom 4121 | . . 3 ⊢ (𝐵 ∪ 𝐶) = (𝐶 ∪ 𝐵) | |
| 2 | 1 | sseq2i 3976 | . 2 ⊢ (𝐴 ⊆ (𝐵 ∪ 𝐶) ↔ 𝐴 ⊆ (𝐶 ∪ 𝐵)) |
| 3 | ssundif 4451 | . 2 ⊢ (𝐴 ⊆ (𝐵 ∪ 𝐶) ↔ (𝐴 ∖ 𝐵) ⊆ 𝐶) | |
| 4 | ssundif 4451 | . 2 ⊢ (𝐴 ⊆ (𝐶 ∪ 𝐵) ↔ (𝐴 ∖ 𝐶) ⊆ 𝐵) | |
| 5 | 2, 3, 4 | 3bitr3i 301 | 1 ⊢ ((𝐴 ∖ 𝐵) ⊆ 𝐶 ↔ (𝐴 ∖ 𝐶) ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∖ cdif 3911 ∪ cun 3912 ⊆ wss 3914 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 |
| This theorem is referenced by: pssdifcom1 4453 pssdifcom2 4454 isreg2 23264 restmetu 24458 conss1 44433 icccncfext 45885 |
| Copyright terms: Public domain | W3C validator |