![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > difcom | Structured version Visualization version GIF version |
Description: Swap the arguments of a class difference. (Contributed by NM, 29-Mar-2007.) |
Ref | Expression |
---|---|
difcom | ⊢ ((𝐴 ∖ 𝐵) ⊆ 𝐶 ↔ (𝐴 ∖ 𝐶) ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uncom 4152 | . . 3 ⊢ (𝐵 ∪ 𝐶) = (𝐶 ∪ 𝐵) | |
2 | 1 | sseq2i 4009 | . 2 ⊢ (𝐴 ⊆ (𝐵 ∪ 𝐶) ↔ 𝐴 ⊆ (𝐶 ∪ 𝐵)) |
3 | ssundif 4488 | . 2 ⊢ (𝐴 ⊆ (𝐵 ∪ 𝐶) ↔ (𝐴 ∖ 𝐵) ⊆ 𝐶) | |
4 | ssundif 4488 | . 2 ⊢ (𝐴 ⊆ (𝐶 ∪ 𝐵) ↔ (𝐴 ∖ 𝐶) ⊆ 𝐵) | |
5 | 2, 3, 4 | 3bitr3i 301 | 1 ⊢ ((𝐴 ∖ 𝐵) ⊆ 𝐶 ↔ (𝐴 ∖ 𝐶) ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∖ cdif 3944 ∪ cun 3945 ⊆ wss 3947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 |
This theorem is referenced by: pssdifcom1 4490 pssdifcom2 4491 isreg2 23294 restmetu 24492 conss1 43881 icccncfext 45275 |
Copyright terms: Public domain | W3C validator |