Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > difcom | Structured version Visualization version GIF version |
Description: Swap the arguments of a class difference. (Contributed by NM, 29-Mar-2007.) |
Ref | Expression |
---|---|
difcom | ⊢ ((𝐴 ∖ 𝐵) ⊆ 𝐶 ↔ (𝐴 ∖ 𝐶) ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uncom 4091 | . . 3 ⊢ (𝐵 ∪ 𝐶) = (𝐶 ∪ 𝐵) | |
2 | 1 | sseq2i 3954 | . 2 ⊢ (𝐴 ⊆ (𝐵 ∪ 𝐶) ↔ 𝐴 ⊆ (𝐶 ∪ 𝐵)) |
3 | ssundif 4423 | . 2 ⊢ (𝐴 ⊆ (𝐵 ∪ 𝐶) ↔ (𝐴 ∖ 𝐵) ⊆ 𝐶) | |
4 | ssundif 4423 | . 2 ⊢ (𝐴 ⊆ (𝐶 ∪ 𝐵) ↔ (𝐴 ∖ 𝐶) ⊆ 𝐵) | |
5 | 2, 3, 4 | 3bitr3i 300 | 1 ⊢ ((𝐴 ∖ 𝐵) ⊆ 𝐶 ↔ (𝐴 ∖ 𝐶) ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∖ cdif 3888 ∪ cun 3889 ⊆ wss 3891 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1544 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 |
This theorem is referenced by: pssdifcom1 4425 pssdifcom2 4426 isreg2 22509 restmetu 23707 conss1 42015 icccncfext 43382 |
Copyright terms: Public domain | W3C validator |