MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difcom Structured version   Visualization version   GIF version

Theorem difcom 4424
Description: Swap the arguments of a class difference. (Contributed by NM, 29-Mar-2007.)
Assertion
Ref Expression
difcom ((𝐴𝐵) ⊆ 𝐶 ↔ (𝐴𝐶) ⊆ 𝐵)

Proof of Theorem difcom
StepHypRef Expression
1 uncom 4091 . . 3 (𝐵𝐶) = (𝐶𝐵)
21sseq2i 3954 . 2 (𝐴 ⊆ (𝐵𝐶) ↔ 𝐴 ⊆ (𝐶𝐵))
3 ssundif 4423 . 2 (𝐴 ⊆ (𝐵𝐶) ↔ (𝐴𝐵) ⊆ 𝐶)
4 ssundif 4423 . 2 (𝐴 ⊆ (𝐶𝐵) ↔ (𝐴𝐶) ⊆ 𝐵)
52, 3, 43bitr3i 300 1 ((𝐴𝐵) ⊆ 𝐶 ↔ (𝐴𝐶) ⊆ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 205  cdif 3888  cun 3889  wss 3891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1544  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908
This theorem is referenced by:  pssdifcom1  4425  pssdifcom2  4426  isreg2  22509  restmetu  23707  conss1  42015  icccncfext  43382
  Copyright terms: Public domain W3C validator