Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  compab Structured version   Visualization version   GIF version

Theorem compab 42013
Description: Two ways of saying "the complement of a class abstraction". (Contributed by Andrew Salmon, 15-Jul-2011.) (Proof shortened by Mario Carneiro, 11-Dec-2016.)
Assertion
Ref Expression
compab (V ∖ {𝑧𝜑}) = {𝑧 ∣ ¬ 𝜑}

Proof of Theorem compab
StepHypRef Expression
1 nfcv 2908 . . . 4 𝑧V
2 nfab1 2910 . . . 4 𝑧{𝑧𝜑}
31, 2nfdif 4064 . . 3 𝑧(V ∖ {𝑧𝜑})
4 nfab1 2910 . . 3 𝑧{𝑧 ∣ ¬ 𝜑}
53, 4cleqf 2939 . 2 ((V ∖ {𝑧𝜑}) = {𝑧 ∣ ¬ 𝜑} ↔ ∀𝑧(𝑧 ∈ (V ∖ {𝑧𝜑}) ↔ 𝑧 ∈ {𝑧 ∣ ¬ 𝜑}))
6 abid 2720 . . . 4 (𝑧 ∈ {𝑧𝜑} ↔ 𝜑)
76notbii 319 . . 3 𝑧 ∈ {𝑧𝜑} ↔ ¬ 𝜑)
8 velcomp 3906 . . 3 (𝑧 ∈ (V ∖ {𝑧𝜑}) ↔ ¬ 𝑧 ∈ {𝑧𝜑})
9 abid 2720 . . 3 (𝑧 ∈ {𝑧 ∣ ¬ 𝜑} ↔ ¬ 𝜑)
107, 8, 93bitr4i 302 . 2 (𝑧 ∈ (V ∖ {𝑧𝜑}) ↔ 𝑧 ∈ {𝑧 ∣ ¬ 𝜑})
115, 10mpgbir 1805 1 (V ∖ {𝑧𝜑}) = {𝑧 ∣ ¬ 𝜑}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205   = wceq 1541  wcel 2109  {cab 2716  Vcvv 3430  cdif 3888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1544  df-ex 1786  df-nf 1790  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-rab 3074  df-v 3432  df-dif 3894
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator