| Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > compab | Structured version Visualization version GIF version | ||
| Description: Two ways of saying "the complement of a class abstraction". (Contributed by Andrew Salmon, 15-Jul-2011.) (Proof shortened by Mario Carneiro, 11-Dec-2016.) |
| Ref | Expression |
|---|---|
| compab | ⊢ (V ∖ {𝑧 ∣ 𝜑}) = {𝑧 ∣ ¬ 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2894 | . . . 4 ⊢ Ⅎ𝑧V | |
| 2 | nfab1 2896 | . . . 4 ⊢ Ⅎ𝑧{𝑧 ∣ 𝜑} | |
| 3 | 1, 2 | nfdif 4079 | . . 3 ⊢ Ⅎ𝑧(V ∖ {𝑧 ∣ 𝜑}) |
| 4 | nfab1 2896 | . . 3 ⊢ Ⅎ𝑧{𝑧 ∣ ¬ 𝜑} | |
| 5 | 3, 4 | cleqf 2923 | . 2 ⊢ ((V ∖ {𝑧 ∣ 𝜑}) = {𝑧 ∣ ¬ 𝜑} ↔ ∀𝑧(𝑧 ∈ (V ∖ {𝑧 ∣ 𝜑}) ↔ 𝑧 ∈ {𝑧 ∣ ¬ 𝜑})) |
| 6 | abid 2713 | . . . 4 ⊢ (𝑧 ∈ {𝑧 ∣ 𝜑} ↔ 𝜑) | |
| 7 | 6 | notbii 320 | . . 3 ⊢ (¬ 𝑧 ∈ {𝑧 ∣ 𝜑} ↔ ¬ 𝜑) |
| 8 | velcomp 3917 | . . 3 ⊢ (𝑧 ∈ (V ∖ {𝑧 ∣ 𝜑}) ↔ ¬ 𝑧 ∈ {𝑧 ∣ 𝜑}) | |
| 9 | abid 2713 | . . 3 ⊢ (𝑧 ∈ {𝑧 ∣ ¬ 𝜑} ↔ ¬ 𝜑) | |
| 10 | 7, 8, 9 | 3bitr4i 303 | . 2 ⊢ (𝑧 ∈ (V ∖ {𝑧 ∣ 𝜑}) ↔ 𝑧 ∈ {𝑧 ∣ ¬ 𝜑}) |
| 11 | 5, 10 | mpgbir 1800 | 1 ⊢ (V ∖ {𝑧 ∣ 𝜑}) = {𝑧 ∣ ¬ 𝜑} |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1541 ∈ wcel 2111 {cab 2709 Vcvv 3436 ∖ cdif 3899 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-v 3438 df-dif 3905 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |