Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > compab | Structured version Visualization version GIF version |
Description: Two ways of saying "the complement of a class abstraction". (Contributed by Andrew Salmon, 15-Jul-2011.) (Proof shortened by Mario Carneiro, 11-Dec-2016.) |
Ref | Expression |
---|---|
compab | ⊢ (V ∖ {𝑧 ∣ 𝜑}) = {𝑧 ∣ ¬ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2908 | . . . 4 ⊢ Ⅎ𝑧V | |
2 | nfab1 2910 | . . . 4 ⊢ Ⅎ𝑧{𝑧 ∣ 𝜑} | |
3 | 1, 2 | nfdif 4064 | . . 3 ⊢ Ⅎ𝑧(V ∖ {𝑧 ∣ 𝜑}) |
4 | nfab1 2910 | . . 3 ⊢ Ⅎ𝑧{𝑧 ∣ ¬ 𝜑} | |
5 | 3, 4 | cleqf 2939 | . 2 ⊢ ((V ∖ {𝑧 ∣ 𝜑}) = {𝑧 ∣ ¬ 𝜑} ↔ ∀𝑧(𝑧 ∈ (V ∖ {𝑧 ∣ 𝜑}) ↔ 𝑧 ∈ {𝑧 ∣ ¬ 𝜑})) |
6 | abid 2720 | . . . 4 ⊢ (𝑧 ∈ {𝑧 ∣ 𝜑} ↔ 𝜑) | |
7 | 6 | notbii 319 | . . 3 ⊢ (¬ 𝑧 ∈ {𝑧 ∣ 𝜑} ↔ ¬ 𝜑) |
8 | velcomp 3906 | . . 3 ⊢ (𝑧 ∈ (V ∖ {𝑧 ∣ 𝜑}) ↔ ¬ 𝑧 ∈ {𝑧 ∣ 𝜑}) | |
9 | abid 2720 | . . 3 ⊢ (𝑧 ∈ {𝑧 ∣ ¬ 𝜑} ↔ ¬ 𝜑) | |
10 | 7, 8, 9 | 3bitr4i 302 | . 2 ⊢ (𝑧 ∈ (V ∖ {𝑧 ∣ 𝜑}) ↔ 𝑧 ∈ {𝑧 ∣ ¬ 𝜑}) |
11 | 5, 10 | mpgbir 1805 | 1 ⊢ (V ∖ {𝑧 ∣ 𝜑}) = {𝑧 ∣ ¬ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 = wceq 1541 ∈ wcel 2109 {cab 2716 Vcvv 3430 ∖ cdif 3888 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1544 df-ex 1786 df-nf 1790 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-rab 3074 df-v 3432 df-dif 3894 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |