Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  compab Structured version   Visualization version   GIF version

Theorem compab 42273
Description: Two ways of saying "the complement of a class abstraction". (Contributed by Andrew Salmon, 15-Jul-2011.) (Proof shortened by Mario Carneiro, 11-Dec-2016.)
Assertion
Ref Expression
compab (V ∖ {𝑧𝜑}) = {𝑧 ∣ ¬ 𝜑}

Proof of Theorem compab
StepHypRef Expression
1 nfcv 2905 . . . 4 𝑧V
2 nfab1 2907 . . . 4 𝑧{𝑧𝜑}
31, 2nfdif 4066 . . 3 𝑧(V ∖ {𝑧𝜑})
4 nfab1 2907 . . 3 𝑧{𝑧 ∣ ¬ 𝜑}
53, 4cleqf 2936 . 2 ((V ∖ {𝑧𝜑}) = {𝑧 ∣ ¬ 𝜑} ↔ ∀𝑧(𝑧 ∈ (V ∖ {𝑧𝜑}) ↔ 𝑧 ∈ {𝑧 ∣ ¬ 𝜑}))
6 abid 2717 . . . 4 (𝑧 ∈ {𝑧𝜑} ↔ 𝜑)
76notbii 320 . . 3 𝑧 ∈ {𝑧𝜑} ↔ ¬ 𝜑)
8 velcomp 3907 . . 3 (𝑧 ∈ (V ∖ {𝑧𝜑}) ↔ ¬ 𝑧 ∈ {𝑧𝜑})
9 abid 2717 . . 3 (𝑧 ∈ {𝑧 ∣ ¬ 𝜑} ↔ ¬ 𝜑)
107, 8, 93bitr4i 303 . 2 (𝑧 ∈ (V ∖ {𝑧𝜑}) ↔ 𝑧 ∈ {𝑧 ∣ ¬ 𝜑})
115, 10mpgbir 1799 1 (V ∖ {𝑧𝜑}) = {𝑧 ∣ ¬ 𝜑}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205   = wceq 1539  wcel 2104  {cab 2713  Vcvv 3437  cdif 3889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-tru 1542  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-rab 3306  df-v 3439  df-dif 3895
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator