MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssconb Structured version   Visualization version   GIF version

Theorem ssconb 4028
Description: Contraposition law for subsets. (Contributed by NM, 22-Mar-1998.)
Assertion
Ref Expression
ssconb ((𝐴𝐶𝐵𝐶) → (𝐴 ⊆ (𝐶𝐵) ↔ 𝐵 ⊆ (𝐶𝐴)))

Proof of Theorem ssconb
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ssel 3870 . . . . . . 7 (𝐴𝐶 → (𝑥𝐴𝑥𝐶))
2 ssel 3870 . . . . . . 7 (𝐵𝐶 → (𝑥𝐵𝑥𝐶))
3 pm5.1 823 . . . . . . 7 (((𝑥𝐴𝑥𝐶) ∧ (𝑥𝐵𝑥𝐶)) → ((𝑥𝐴𝑥𝐶) ↔ (𝑥𝐵𝑥𝐶)))
41, 2, 3syl2an 599 . . . . . 6 ((𝐴𝐶𝐵𝐶) → ((𝑥𝐴𝑥𝐶) ↔ (𝑥𝐵𝑥𝐶)))
5 con2b 363 . . . . . . 7 ((𝑥𝐴 → ¬ 𝑥𝐵) ↔ (𝑥𝐵 → ¬ 𝑥𝐴))
65a1i 11 . . . . . 6 ((𝐴𝐶𝐵𝐶) → ((𝑥𝐴 → ¬ 𝑥𝐵) ↔ (𝑥𝐵 → ¬ 𝑥𝐴)))
74, 6anbi12d 634 . . . . 5 ((𝐴𝐶𝐵𝐶) → (((𝑥𝐴𝑥𝐶) ∧ (𝑥𝐴 → ¬ 𝑥𝐵)) ↔ ((𝑥𝐵𝑥𝐶) ∧ (𝑥𝐵 → ¬ 𝑥𝐴))))
8 jcab 521 . . . . 5 ((𝑥𝐴 → (𝑥𝐶 ∧ ¬ 𝑥𝐵)) ↔ ((𝑥𝐴𝑥𝐶) ∧ (𝑥𝐴 → ¬ 𝑥𝐵)))
9 jcab 521 . . . . 5 ((𝑥𝐵 → (𝑥𝐶 ∧ ¬ 𝑥𝐴)) ↔ ((𝑥𝐵𝑥𝐶) ∧ (𝑥𝐵 → ¬ 𝑥𝐴)))
107, 8, 93bitr4g 317 . . . 4 ((𝐴𝐶𝐵𝐶) → ((𝑥𝐴 → (𝑥𝐶 ∧ ¬ 𝑥𝐵)) ↔ (𝑥𝐵 → (𝑥𝐶 ∧ ¬ 𝑥𝐴))))
11 eldif 3853 . . . . 5 (𝑥 ∈ (𝐶𝐵) ↔ (𝑥𝐶 ∧ ¬ 𝑥𝐵))
1211imbi2i 339 . . . 4 ((𝑥𝐴𝑥 ∈ (𝐶𝐵)) ↔ (𝑥𝐴 → (𝑥𝐶 ∧ ¬ 𝑥𝐵)))
13 eldif 3853 . . . . 5 (𝑥 ∈ (𝐶𝐴) ↔ (𝑥𝐶 ∧ ¬ 𝑥𝐴))
1413imbi2i 339 . . . 4 ((𝑥𝐵𝑥 ∈ (𝐶𝐴)) ↔ (𝑥𝐵 → (𝑥𝐶 ∧ ¬ 𝑥𝐴)))
1510, 12, 143bitr4g 317 . . 3 ((𝐴𝐶𝐵𝐶) → ((𝑥𝐴𝑥 ∈ (𝐶𝐵)) ↔ (𝑥𝐵𝑥 ∈ (𝐶𝐴))))
1615albidv 1927 . 2 ((𝐴𝐶𝐵𝐶) → (∀𝑥(𝑥𝐴𝑥 ∈ (𝐶𝐵)) ↔ ∀𝑥(𝑥𝐵𝑥 ∈ (𝐶𝐴))))
17 dfss2 3863 . 2 (𝐴 ⊆ (𝐶𝐵) ↔ ∀𝑥(𝑥𝐴𝑥 ∈ (𝐶𝐵)))
18 dfss2 3863 . 2 (𝐵 ⊆ (𝐶𝐴) ↔ ∀𝑥(𝑥𝐵𝑥 ∈ (𝐶𝐴)))
1916, 17, 183bitr4g 317 1 ((𝐴𝐶𝐵𝐶) → (𝐴 ⊆ (𝐶𝐵) ↔ 𝐵 ⊆ (𝐶𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wal 1540  wcel 2114  cdif 3840  wss 3843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-ext 2710
This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1545  df-ex 1787  df-sb 2075  df-clab 2717  df-cleq 2730  df-clel 2811  df-v 3400  df-dif 3846  df-in 3850  df-ss 3860
This theorem is referenced by:  pssdifcom1  4376  pssdifcom2  4377  sbthlem1  8677  sbthlem2  8678  rpnnen2lem11  15669  setscom  16630  dpjidcl  19299  clsval2  21801  regsep2  22127  cyc3conja  31001  ordtconnlem1  31446  conss2  41599
  Copyright terms: Public domain W3C validator