Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cosseqi Structured version   Visualization version   GIF version

Theorem cosseqi 38425
Description: Equality theorem for the classes of cosets by 𝐴 and 𝐵, inference form. (Contributed by Peter Mazsa, 9-Jan-2018.)
Hypothesis
Ref Expression
cosseqi.1 𝐴 = 𝐵
Assertion
Ref Expression
cosseqi 𝐴 = ≀ 𝐵

Proof of Theorem cosseqi
StepHypRef Expression
1 cosseqi.1 . 2 𝐴 = 𝐵
2 cosseq 38424 . 2 (𝐴 = 𝐵 → ≀ 𝐴 = ≀ 𝐵)
31, 2ax-mp 5 1 𝐴 = ≀ 𝐵
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  ccoss 38176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-br 5111  df-opab 5173  df-coss 38409
This theorem is referenced by:  br1cossinres  38445  br1cossxrnres  38446  cosscnvid  38479
  Copyright terms: Public domain W3C validator