Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cosseq Structured version   Visualization version   GIF version

Theorem cosseq 38408
Description: Equality theorem for the classes of cosets by 𝐴 and 𝐵. (Contributed by Peter Mazsa, 9-Jan-2018.)
Assertion
Ref Expression
cosseq (𝐴 = 𝐵 → ≀ 𝐴 = ≀ 𝐵)

Proof of Theorem cosseq
Dummy variables 𝑢 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq 5150 . . . . 5 (𝐴 = 𝐵 → (𝑢𝐴𝑥𝑢𝐵𝑥))
2 breq 5150 . . . . 5 (𝐴 = 𝐵 → (𝑢𝐴𝑦𝑢𝐵𝑦))
31, 2anbi12d 632 . . . 4 (𝐴 = 𝐵 → ((𝑢𝐴𝑥𝑢𝐴𝑦) ↔ (𝑢𝐵𝑥𝑢𝐵𝑦)))
43exbidv 1919 . . 3 (𝐴 = 𝐵 → (∃𝑢(𝑢𝐴𝑥𝑢𝐴𝑦) ↔ ∃𝑢(𝑢𝐵𝑥𝑢𝐵𝑦)))
54opabbidv 5214 . 2 (𝐴 = 𝐵 → {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝐴𝑥𝑢𝐴𝑦)} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝐵𝑥𝑢𝐵𝑦)})
6 df-coss 38393 . 2 𝐴 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝐴𝑥𝑢𝐴𝑦)}
7 df-coss 38393 . 2 𝐵 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝐵𝑥𝑢𝐵𝑦)}
85, 6, 73eqtr4g 2800 1 (𝐴 = 𝐵 → ≀ 𝐴 = ≀ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wex 1776   class class class wbr 5148  {copab 5210  ccoss 38162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-br 5149  df-opab 5211  df-coss 38393
This theorem is referenced by:  cosseqi  38409  cosseqd  38410  elfunsALTV  38674
  Copyright terms: Public domain W3C validator