![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cosseq | Structured version Visualization version GIF version |
Description: Equality theorem for the classes of cosets by 𝐴 and 𝐵. (Contributed by Peter Mazsa, 9-Jan-2018.) |
Ref | Expression |
---|---|
cosseq | ⊢ (𝐴 = 𝐵 → ≀ 𝐴 = ≀ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq 5150 | . . . . 5 ⊢ (𝐴 = 𝐵 → (𝑢𝐴𝑥 ↔ 𝑢𝐵𝑥)) | |
2 | breq 5150 | . . . . 5 ⊢ (𝐴 = 𝐵 → (𝑢𝐴𝑦 ↔ 𝑢𝐵𝑦)) | |
3 | 1, 2 | anbi12d 631 | . . . 4 ⊢ (𝐴 = 𝐵 → ((𝑢𝐴𝑥 ∧ 𝑢𝐴𝑦) ↔ (𝑢𝐵𝑥 ∧ 𝑢𝐵𝑦))) |
4 | 3 | exbidv 1924 | . . 3 ⊢ (𝐴 = 𝐵 → (∃𝑢(𝑢𝐴𝑥 ∧ 𝑢𝐴𝑦) ↔ ∃𝑢(𝑢𝐵𝑥 ∧ 𝑢𝐵𝑦))) |
5 | 4 | opabbidv 5214 | . 2 ⊢ (𝐴 = 𝐵 → {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝐴𝑥 ∧ 𝑢𝐴𝑦)} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝐵𝑥 ∧ 𝑢𝐵𝑦)}) |
6 | df-coss 37584 | . 2 ⊢ ≀ 𝐴 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝐴𝑥 ∧ 𝑢𝐴𝑦)} | |
7 | df-coss 37584 | . 2 ⊢ ≀ 𝐵 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝐵𝑥 ∧ 𝑢𝐵𝑦)} | |
8 | 5, 6, 7 | 3eqtr4g 2797 | 1 ⊢ (𝐴 = 𝐵 → ≀ 𝐴 = ≀ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∃wex 1781 class class class wbr 5148 {copab 5210 ≀ ccoss 37346 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-br 5149 df-opab 5211 df-coss 37584 |
This theorem is referenced by: cosseqi 37600 cosseqd 37601 elfunsALTV 37865 |
Copyright terms: Public domain | W3C validator |