| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cosseq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the classes of cosets by 𝐴 and 𝐵. (Contributed by Peter Mazsa, 9-Jan-2018.) |
| Ref | Expression |
|---|---|
| cosseq | ⊢ (𝐴 = 𝐵 → ≀ 𝐴 = ≀ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq 5093 | . . . . 5 ⊢ (𝐴 = 𝐵 → (𝑢𝐴𝑥 ↔ 𝑢𝐵𝑥)) | |
| 2 | breq 5093 | . . . . 5 ⊢ (𝐴 = 𝐵 → (𝑢𝐴𝑦 ↔ 𝑢𝐵𝑦)) | |
| 3 | 1, 2 | anbi12d 632 | . . . 4 ⊢ (𝐴 = 𝐵 → ((𝑢𝐴𝑥 ∧ 𝑢𝐴𝑦) ↔ (𝑢𝐵𝑥 ∧ 𝑢𝐵𝑦))) |
| 4 | 3 | exbidv 1922 | . . 3 ⊢ (𝐴 = 𝐵 → (∃𝑢(𝑢𝐴𝑥 ∧ 𝑢𝐴𝑦) ↔ ∃𝑢(𝑢𝐵𝑥 ∧ 𝑢𝐵𝑦))) |
| 5 | 4 | opabbidv 5157 | . 2 ⊢ (𝐴 = 𝐵 → {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑢𝐴𝑥 ∧ 𝑢𝐴𝑦)} = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑢𝐵𝑥 ∧ 𝑢𝐵𝑦)}) |
| 6 | df-coss 38447 | . 2 ⊢ ≀ 𝐴 = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑢𝐴𝑥 ∧ 𝑢𝐴𝑦)} | |
| 7 | df-coss 38447 | . 2 ⊢ ≀ 𝐵 = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑢𝐵𝑥 ∧ 𝑢𝐵𝑦)} | |
| 8 | 5, 6, 7 | 3eqtr4g 2791 | 1 ⊢ (𝐴 = 𝐵 → ≀ 𝐴 = ≀ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∃wex 1780 class class class wbr 5091 {copab 5153 ≀ ccoss 38214 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-br 5092 df-opab 5154 df-coss 38447 |
| This theorem is referenced by: cosseqi 38463 cosseqd 38464 elfunsALTV 38729 |
| Copyright terms: Public domain | W3C validator |