![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cosseq | Structured version Visualization version GIF version |
Description: Equality theorem for the classes of cosets by 𝐴 and 𝐵. (Contributed by Peter Mazsa, 9-Jan-2018.) |
Ref | Expression |
---|---|
cosseq | ⊢ (𝐴 = 𝐵 → ≀ 𝐴 = ≀ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq 5150 | . . . . 5 ⊢ (𝐴 = 𝐵 → (𝑢𝐴𝑥 ↔ 𝑢𝐵𝑥)) | |
2 | breq 5150 | . . . . 5 ⊢ (𝐴 = 𝐵 → (𝑢𝐴𝑦 ↔ 𝑢𝐵𝑦)) | |
3 | 1, 2 | anbi12d 631 | . . . 4 ⊢ (𝐴 = 𝐵 → ((𝑢𝐴𝑥 ∧ 𝑢𝐴𝑦) ↔ (𝑢𝐵𝑥 ∧ 𝑢𝐵𝑦))) |
4 | 3 | exbidv 1917 | . . 3 ⊢ (𝐴 = 𝐵 → (∃𝑢(𝑢𝐴𝑥 ∧ 𝑢𝐴𝑦) ↔ ∃𝑢(𝑢𝐵𝑥 ∧ 𝑢𝐵𝑦))) |
5 | 4 | opabbidv 5214 | . 2 ⊢ (𝐴 = 𝐵 → {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑢𝐴𝑥 ∧ 𝑢𝐴𝑦)} = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑢𝐵𝑥 ∧ 𝑢𝐵𝑦)}) |
6 | df-coss 37883 | . 2 ⊢ ≀ 𝐴 = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑢𝐴𝑥 ∧ 𝑢𝐴𝑦)} | |
7 | df-coss 37883 | . 2 ⊢ ≀ 𝐵 = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑢𝐵𝑥 ∧ 𝑢𝐵𝑦)} | |
8 | 5, 6, 7 | 3eqtr4g 2793 | 1 ⊢ (𝐴 = 𝐵 → ≀ 𝐴 = ≀ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∃wex 1774 class class class wbr 5148 {copab 5210 ≀ ccoss 37648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-br 5149 df-opab 5211 df-coss 37883 |
This theorem is referenced by: cosseqi 37899 cosseqd 37900 elfunsALTV 38164 |
Copyright terms: Public domain | W3C validator |