![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cosseq | Structured version Visualization version GIF version |
Description: Equality theorem for the classes of cosets by 𝐴 and 𝐵. (Contributed by Peter Mazsa, 9-Jan-2018.) |
Ref | Expression |
---|---|
cosseq | ⊢ (𝐴 = 𝐵 → ≀ 𝐴 = ≀ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq 5151 | . . . . 5 ⊢ (𝐴 = 𝐵 → (𝑢𝐴𝑥 ↔ 𝑢𝐵𝑥)) | |
2 | breq 5151 | . . . . 5 ⊢ (𝐴 = 𝐵 → (𝑢𝐴𝑦 ↔ 𝑢𝐵𝑦)) | |
3 | 1, 2 | anbi12d 632 | . . . 4 ⊢ (𝐴 = 𝐵 → ((𝑢𝐴𝑥 ∧ 𝑢𝐴𝑦) ↔ (𝑢𝐵𝑥 ∧ 𝑢𝐵𝑦))) |
4 | 3 | exbidv 1925 | . . 3 ⊢ (𝐴 = 𝐵 → (∃𝑢(𝑢𝐴𝑥 ∧ 𝑢𝐴𝑦) ↔ ∃𝑢(𝑢𝐵𝑥 ∧ 𝑢𝐵𝑦))) |
5 | 4 | opabbidv 5215 | . 2 ⊢ (𝐴 = 𝐵 → {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝐴𝑥 ∧ 𝑢𝐴𝑦)} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝐵𝑥 ∧ 𝑢𝐵𝑦)}) |
6 | df-coss 37329 | . 2 ⊢ ≀ 𝐴 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝐴𝑥 ∧ 𝑢𝐴𝑦)} | |
7 | df-coss 37329 | . 2 ⊢ ≀ 𝐵 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝐵𝑥 ∧ 𝑢𝐵𝑦)} | |
8 | 5, 6, 7 | 3eqtr4g 2798 | 1 ⊢ (𝐴 = 𝐵 → ≀ 𝐴 = ≀ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∃wex 1782 class class class wbr 5149 {copab 5211 ≀ ccoss 37091 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-br 5150 df-opab 5212 df-coss 37329 |
This theorem is referenced by: cosseqi 37345 cosseqd 37346 elfunsALTV 37610 |
Copyright terms: Public domain | W3C validator |