Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cosscnvid Structured version   Visualization version   GIF version

Theorem cosscnvid 38441
Description: Cosets by the converse identity relation are the identity relation. (Contributed by Peter Mazsa, 27-Sep-2021.)
Assertion
Ref Expression
cosscnvid I = I

Proof of Theorem cosscnvid
StepHypRef Expression
1 cnvi 6179 . . 3 I = I
21cosseqi 38387 . 2 I = ≀ I
3 cossid 38440 . 2 ≀ I = I
42, 3eqtri 2762 1 I = I
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537   I cid 5603  ccnv 5705  ccoss 38139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2105  ax-9 2113  ax-ext 2705  ax-sep 5327  ax-nul 5334  ax-pr 5457
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2712  df-cleq 2726  df-clel 2813  df-ral 3064  df-rex 3073  df-rab 3440  df-v 3486  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4354  df-if 4555  df-sn 4655  df-pr 4657  df-op 4661  df-br 5177  df-opab 5239  df-id 5604  df-xp 5712  df-rel 5713  df-cnv 5714  df-coss 38371
This theorem is referenced by:  disjALTVid  38715
  Copyright terms: Public domain W3C validator