Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cosscnvid Structured version   Visualization version   GIF version

Theorem cosscnvid 38517
Description: Cosets by the converse identity relation are the identity relation. (Contributed by Peter Mazsa, 27-Sep-2021.)
Assertion
Ref Expression
cosscnvid I = I

Proof of Theorem cosscnvid
StepHypRef Expression
1 cnvi 6088 . . 3 I = I
21cosseqi 38463 . 2 I = ≀ I
3 cossid 38516 . 2 ≀ I = I
42, 3eqtri 2754 1 I = I
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541   I cid 5510  ccnv 5615  ccoss 38214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-coss 38447
This theorem is referenced by:  disjALTVid  38792
  Copyright terms: Public domain W3C validator