![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cosscnvid | Structured version Visualization version GIF version |
Description: Cosets by the converse identity relation are the identity relation. (Contributed by Peter Mazsa, 27-Sep-2021.) |
Ref | Expression |
---|---|
cosscnvid | ⊢ ≀ ◡ I = I |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvi 6179 | . . 3 ⊢ ◡ I = I | |
2 | 1 | cosseqi 38387 | . 2 ⊢ ≀ ◡ I = ≀ I |
3 | cossid 38440 | . 2 ⊢ ≀ I = I | |
4 | 2, 3 | eqtri 2762 | 1 ⊢ ≀ ◡ I = I |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 I cid 5603 ◡ccnv 5705 ≀ ccoss 38139 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2105 ax-9 2113 ax-ext 2705 ax-sep 5327 ax-nul 5334 ax-pr 5457 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2712 df-cleq 2726 df-clel 2813 df-ral 3064 df-rex 3073 df-rab 3440 df-v 3486 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4354 df-if 4555 df-sn 4655 df-pr 4657 df-op 4661 df-br 5177 df-opab 5239 df-id 5604 df-xp 5712 df-rel 5713 df-cnv 5714 df-coss 38371 |
This theorem is referenced by: disjALTVid 38715 |
Copyright terms: Public domain | W3C validator |