Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-coss Structured version   Visualization version   GIF version

Definition df-coss 36537
Description: Define the class of cosets by 𝑅: 𝑥 and 𝑦 are cosets by 𝑅 iff there exists a set 𝑢 such that both 𝑢𝑅𝑥 and 𝑢𝑅𝑦 hold, i.e., both 𝑥 and 𝑦 are are elements of the 𝑅 -coset of 𝑢 (see dfcoss2 36539 and the comment of dfec2 8501). 𝑅 is usually a relation.

This concept simplifies theorems relating partition and equivalence: the left side of these theorems relate to 𝑅, the right side relate to 𝑅 (see e.g. ~? pet ). Without the definition of 𝑅 we should have to relate the right side of these theorems to a composition of a converse (cf. dfcoss3 36540) or to the range of a range Cartesian product of classes (cf. dfcoss4 36541), which would make the theorems complicated and confusing. Alternate definition is dfcoss2 36539. Technically, we can define it via composition (dfcoss3 36540) or as the range of a range Cartesian product (dfcoss4 36541), but neither of these definitions reveal directly how the cosets by 𝑅 relate to each other. We define functions (df-funsALTV 36792, df-funALTV 36793) and disjoints (dfdisjs 36819, dfdisjs2 36820, df-disjALTV 36816, dfdisjALTV2 36825) with the help of it as well. (Contributed by Peter Mazsa, 9-Jan-2018.)

Assertion
Ref Expression
df-coss 𝑅 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦)}
Distinct variable group:   𝑢,𝑅,𝑥,𝑦

Detailed syntax breakdown of Definition df-coss
StepHypRef Expression
1 cR . . 3 class 𝑅
21ccoss 36333 . 2 class 𝑅
3 vu . . . . . . 7 setvar 𝑢
43cv 1538 . . . . . 6 class 𝑢
5 vx . . . . . . 7 setvar 𝑥
65cv 1538 . . . . . 6 class 𝑥
74, 6, 1wbr 5074 . . . . 5 wff 𝑢𝑅𝑥
8 vy . . . . . . 7 setvar 𝑦
98cv 1538 . . . . . 6 class 𝑦
104, 9, 1wbr 5074 . . . . 5 wff 𝑢𝑅𝑦
117, 10wa 396 . . . 4 wff (𝑢𝑅𝑥𝑢𝑅𝑦)
1211, 3wex 1782 . . 3 wff 𝑢(𝑢𝑅𝑥𝑢𝑅𝑦)
1312, 5, 8copab 5136 . 2 class {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦)}
142, 13wceq 1539 1 wff 𝑅 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦)}
Colors of variables: wff setvar class
This definition is referenced by:  dfcoss2  36539  dfcoss3  36540  dfcoss4  36541  relcoss  36546  cossss  36548  cosseq  36549  1cossres  36552  brcoss  36554  cossssid2  36586  cossid  36598
  Copyright terms: Public domain W3C validator