Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-coss Structured version   Visualization version   GIF version

Definition df-coss 36464
Description: Define the class of cosets by 𝑅: 𝑥 and 𝑦 are cosets by 𝑅 iff there exists a set 𝑢 such that both 𝑢𝑅𝑥 and 𝑢𝑅𝑦 hold, i.e., both 𝑥 and 𝑦 are are elements of the 𝑅 -coset of 𝑢 (see dfcoss2 36466 and the comment of dfec2 8459). 𝑅 is usually a relation.

This concept simplifies theorems relating partition and equivalence: the left side of these theorems relate to 𝑅, the right side relate to 𝑅 (see e.g. ~? pet ). Without the definition of 𝑅 we should have to relate the right side of these theorems to a composition of a converse (cf. dfcoss3 36467) or to the range of a range Cartesian product of classes (cf. dfcoss4 36468), which would make the theorems complicated and confusing. Alternate definition is dfcoss2 36466. Technically, we can define it via composition (dfcoss3 36467) or as the range of a range Cartesian product (dfcoss4 36468), but neither of these definitions reveal directly how the cosets by 𝑅 relate to each other. We define functions (df-funsALTV 36719, df-funALTV 36720) and disjoints (dfdisjs 36746, dfdisjs2 36747, df-disjALTV 36743, dfdisjALTV2 36752) with the help of it as well. (Contributed by Peter Mazsa, 9-Jan-2018.)

Assertion
Ref Expression
df-coss 𝑅 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦)}
Distinct variable group:   𝑢,𝑅,𝑥,𝑦

Detailed syntax breakdown of Definition df-coss
StepHypRef Expression
1 cR . . 3 class 𝑅
21ccoss 36260 . 2 class 𝑅
3 vu . . . . . . 7 setvar 𝑢
43cv 1538 . . . . . 6 class 𝑢
5 vx . . . . . . 7 setvar 𝑥
65cv 1538 . . . . . 6 class 𝑥
74, 6, 1wbr 5070 . . . . 5 wff 𝑢𝑅𝑥
8 vy . . . . . . 7 setvar 𝑦
98cv 1538 . . . . . 6 class 𝑦
104, 9, 1wbr 5070 . . . . 5 wff 𝑢𝑅𝑦
117, 10wa 395 . . . 4 wff (𝑢𝑅𝑥𝑢𝑅𝑦)
1211, 3wex 1783 . . 3 wff 𝑢(𝑢𝑅𝑥𝑢𝑅𝑦)
1312, 5, 8copab 5132 . 2 class {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦)}
142, 13wceq 1539 1 wff 𝑅 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦)}
Colors of variables: wff setvar class
This definition is referenced by:  dfcoss2  36466  dfcoss3  36467  dfcoss4  36468  relcoss  36473  cossss  36475  cosseq  36476  1cossres  36479  brcoss  36481  cossssid2  36513  cossid  36525
  Copyright terms: Public domain W3C validator