Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-coss Structured version   Visualization version   GIF version

Definition df-coss 38367
Description: Define the class of cosets by 𝑅: 𝑥 and 𝑦 are cosets by 𝑅 iff there exists a set 𝑢 such that both 𝑢𝑅𝑥 and 𝑢𝑅𝑦 hold, i.e., both 𝑥 and 𝑦 are are elements of the 𝑅 -coset of 𝑢 (see dfcoss2 38369 and the comment of dfec2 8766). 𝑅 is usually a relation.

This concept simplifies theorems relating partition and equivalence: the left side of these theorems relate to 𝑅, the right side relate to 𝑅 (see e.g. pet 38807). Without the definition of 𝑅 we should have to relate the right side of these theorems to a composition of a converse (cf. dfcoss3 38370) or to the range of a range Cartesian product of classes (cf. dfcoss4 38371), which would make the theorems complicated and confusing. Alternate definition is dfcoss2 38369. Technically, we can define it via composition (dfcoss3 38370) or as the range of a range Cartesian product (dfcoss4 38371), but neither of these definitions reveal directly how the cosets by 𝑅 relate to each other. We define functions (df-funsALTV 38637, df-funALTV 38638) and disjoints (dfdisjs 38664, dfdisjs2 38665, df-disjALTV 38661, dfdisjALTV2 38670) with the help of it as well. (Contributed by Peter Mazsa, 9-Jan-2018.)

Assertion
Ref Expression
df-coss 𝑅 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦)}
Distinct variable group:   𝑢,𝑅,𝑥,𝑦

Detailed syntax breakdown of Definition df-coss
StepHypRef Expression
1 cR . . 3 class 𝑅
21ccoss 38135 . 2 class 𝑅
3 vu . . . . . . 7 setvar 𝑢
43cv 1536 . . . . . 6 class 𝑢
5 vx . . . . . . 7 setvar 𝑥
65cv 1536 . . . . . 6 class 𝑥
74, 6, 1wbr 5166 . . . . 5 wff 𝑢𝑅𝑥
8 vy . . . . . . 7 setvar 𝑦
98cv 1536 . . . . . 6 class 𝑦
104, 9, 1wbr 5166 . . . . 5 wff 𝑢𝑅𝑦
117, 10wa 395 . . . 4 wff (𝑢𝑅𝑥𝑢𝑅𝑦)
1211, 3wex 1777 . . 3 wff 𝑢(𝑢𝑅𝑥𝑢𝑅𝑦)
1312, 5, 8copab 5228 . 2 class {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦)}
142, 13wceq 1537 1 wff 𝑅 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦)}
Colors of variables: wff setvar class
This definition is referenced by:  dfcoss2  38369  dfcoss3  38370  dfcoss4  38371  cosscnv  38372  coss1cnvres  38373  relcoss  38379  cossss  38381  cosseq  38382  1cossres  38385  brcoss  38387  cossssid2  38424  cossid  38436
  Copyright terms: Public domain W3C validator