Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-coss Structured version   Visualization version   GIF version

Definition df-coss 36727
Description: Define the class of cosets by 𝑅: 𝑥 and 𝑦 are cosets by 𝑅 iff there exists a set 𝑢 such that both 𝑢𝑅𝑥 and 𝑢𝑅𝑦 hold, i.e., both 𝑥 and 𝑦 are are elements of the 𝑅 -coset of 𝑢 (see dfcoss2 36729 and the comment of dfec2 8577). 𝑅 is usually a relation.

This concept simplifies theorems relating partition and equivalence: the left side of these theorems relate to 𝑅, the right side relate to 𝑅 (see e.g. pet 37167). Without the definition of 𝑅 we should have to relate the right side of these theorems to a composition of a converse (cf. dfcoss3 36730) or to the range of a range Cartesian product of classes (cf. dfcoss4 36731), which would make the theorems complicated and confusing. Alternate definition is dfcoss2 36729. Technically, we can define it via composition (dfcoss3 36730) or as the range of a range Cartesian product (dfcoss4 36731), but neither of these definitions reveal directly how the cosets by 𝑅 relate to each other. We define functions (df-funsALTV 36997, df-funALTV 36998) and disjoints (dfdisjs 37024, dfdisjs2 37025, df-disjALTV 37021, dfdisjALTV2 37030) with the help of it as well. (Contributed by Peter Mazsa, 9-Jan-2018.)

Assertion
Ref Expression
df-coss 𝑅 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦)}
Distinct variable group:   𝑢,𝑅,𝑥,𝑦

Detailed syntax breakdown of Definition df-coss
StepHypRef Expression
1 cR . . 3 class 𝑅
21ccoss 36487 . 2 class 𝑅
3 vu . . . . . . 7 setvar 𝑢
43cv 1540 . . . . . 6 class 𝑢
5 vx . . . . . . 7 setvar 𝑥
65cv 1540 . . . . . 6 class 𝑥
74, 6, 1wbr 5097 . . . . 5 wff 𝑢𝑅𝑥
8 vy . . . . . . 7 setvar 𝑦
98cv 1540 . . . . . 6 class 𝑦
104, 9, 1wbr 5097 . . . . 5 wff 𝑢𝑅𝑦
117, 10wa 397 . . . 4 wff (𝑢𝑅𝑥𝑢𝑅𝑦)
1211, 3wex 1781 . . 3 wff 𝑢(𝑢𝑅𝑥𝑢𝑅𝑦)
1312, 5, 8copab 5159 . 2 class {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦)}
142, 13wceq 1541 1 wff 𝑅 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦)}
Colors of variables: wff setvar class
This definition is referenced by:  dfcoss2  36729  dfcoss3  36730  dfcoss4  36731  cosscnv  36732  coss1cnvres  36733  relcoss  36739  cossss  36741  cosseq  36742  1cossres  36745  brcoss  36747  cossssid2  36784  cossid  36796
  Copyright terms: Public domain W3C validator