Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-coss Structured version   Visualization version   GIF version

Definition df-coss 38434
Description: Define the class of cosets by 𝑅: 𝑥 and 𝑦 are cosets by 𝑅 iff there exists a set 𝑢 such that both 𝑢𝑅𝑥 and 𝑢𝑅𝑦 hold, i.e., both 𝑥 and 𝑦 are are elements of the 𝑅 -coset of 𝑢 (see dfcoss2 38436 and the comment of dfec2 8727). 𝑅 is usually a relation.

This concept simplifies theorems relating partition and equivalence: the left side of these theorems relate to 𝑅, the right side relate to 𝑅 (see e.g. pet 38874). Without the definition of 𝑅 we should have to relate the right side of these theorems to a composition of a converse (cf. dfcoss3 38437) or to the range of a range Cartesian product of classes (cf. dfcoss4 38438), which would make the theorems complicated and confusing. Alternate definition is dfcoss2 38436. Technically, we can define it via composition (dfcoss3 38437) or as the range of a range Cartesian product (dfcoss4 38438), but neither of these definitions reveal directly how the cosets by 𝑅 relate to each other. We define functions (df-funsALTV 38704, df-funALTV 38705) and disjoints (dfdisjs 38731, dfdisjs2 38732, df-disjALTV 38728, dfdisjALTV2 38737) with the help of it as well. (Contributed by Peter Mazsa, 9-Jan-2018.)

Assertion
Ref Expression
df-coss 𝑅 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦)}
Distinct variable group:   𝑢,𝑅,𝑥,𝑦

Detailed syntax breakdown of Definition df-coss
StepHypRef Expression
1 cR . . 3 class 𝑅
21ccoss 38204 . 2 class 𝑅
3 vu . . . . . . 7 setvar 𝑢
43cv 1539 . . . . . 6 class 𝑢
5 vx . . . . . . 7 setvar 𝑥
65cv 1539 . . . . . 6 class 𝑥
74, 6, 1wbr 5124 . . . . 5 wff 𝑢𝑅𝑥
8 vy . . . . . . 7 setvar 𝑦
98cv 1539 . . . . . 6 class 𝑦
104, 9, 1wbr 5124 . . . . 5 wff 𝑢𝑅𝑦
117, 10wa 395 . . . 4 wff (𝑢𝑅𝑥𝑢𝑅𝑦)
1211, 3wex 1779 . . 3 wff 𝑢(𝑢𝑅𝑥𝑢𝑅𝑦)
1312, 5, 8copab 5186 . 2 class {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦)}
142, 13wceq 1540 1 wff 𝑅 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦)}
Colors of variables: wff setvar class
This definition is referenced by:  dfcoss2  38436  dfcoss3  38437  dfcoss4  38438  cosscnv  38439  coss1cnvres  38440  relcoss  38446  cossss  38448  cosseq  38449  1cossres  38452  brcoss  38454  cossssid2  38491  cossid  38503
  Copyright terms: Public domain W3C validator