Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-coss Structured version   Visualization version   GIF version

Definition df-coss 38387
Description: Define the class of cosets by 𝑅: 𝑥 and 𝑦 are cosets by 𝑅 iff there exists a set 𝑢 such that both 𝑢𝑅𝑥 and 𝑢𝑅𝑦 hold, i.e., both 𝑥 and 𝑦 are are elements of the 𝑅 -coset of 𝑢 (see dfcoss2 38389 and the comment of dfec2 8635). 𝑅 is usually a relation.

This concept simplifies theorems relating partition and equivalence: the left side of these theorems relate to 𝑅, the right side relate to 𝑅 (see e.g. pet 38828). Without the definition of 𝑅 we should have to relate the right side of these theorems to a composition of a converse (cf. dfcoss3 38390) or to the range of a range Cartesian product of classes (cf. dfcoss4 38391), which would make the theorems complicated and confusing. Alternate definition is dfcoss2 38389. Technically, we can define it via composition (dfcoss3 38390) or as the range of a range Cartesian product (dfcoss4 38391), but neither of these definitions reveal directly how the cosets by 𝑅 relate to each other. We define functions (df-funsALTV 38658, df-funALTV 38659) and disjoints (dfdisjs 38685, dfdisjs2 38686, df-disjALTV 38682, dfdisjALTV2 38691) with the help of it as well. (Contributed by Peter Mazsa, 9-Jan-2018.)

Assertion
Ref Expression
df-coss 𝑅 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦)}
Distinct variable group:   𝑢,𝑅,𝑥,𝑦

Detailed syntax breakdown of Definition df-coss
StepHypRef Expression
1 cR . . 3 class 𝑅
21ccoss 38154 . 2 class 𝑅
3 vu . . . . . . 7 setvar 𝑢
43cv 1539 . . . . . 6 class 𝑢
5 vx . . . . . . 7 setvar 𝑥
65cv 1539 . . . . . 6 class 𝑥
74, 6, 1wbr 5095 . . . . 5 wff 𝑢𝑅𝑥
8 vy . . . . . . 7 setvar 𝑦
98cv 1539 . . . . . 6 class 𝑦
104, 9, 1wbr 5095 . . . . 5 wff 𝑢𝑅𝑦
117, 10wa 395 . . . 4 wff (𝑢𝑅𝑥𝑢𝑅𝑦)
1211, 3wex 1779 . . 3 wff 𝑢(𝑢𝑅𝑥𝑢𝑅𝑦)
1312, 5, 8copab 5157 . 2 class {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦)}
142, 13wceq 1540 1 wff 𝑅 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦)}
Colors of variables: wff setvar class
This definition is referenced by:  dfcoss2  38389  dfcoss3  38390  dfcoss4  38391  cosscnv  38392  coss1cnvres  38393  relcoss  38399  cossss  38401  cosseq  38402  1cossres  38405  brcoss  38407  cossssid2  38444  cossid  38456
  Copyright terms: Public domain W3C validator