Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-coss Structured version   Visualization version   GIF version

Definition df-coss 38409
Description: Define the class of cosets by 𝑅: 𝑥 and 𝑦 are cosets by 𝑅 iff there exists a set 𝑢 such that both 𝑢𝑅𝑥 and 𝑢𝑅𝑦 hold, i.e., both 𝑥 and 𝑦 are are elements of the 𝑅 -coset of 𝑢 (see dfcoss2 38411 and the comment of dfec2 8677). 𝑅 is usually a relation.

This concept simplifies theorems relating partition and equivalence: the left side of these theorems relate to 𝑅, the right side relate to 𝑅 (see e.g. pet 38850). Without the definition of 𝑅 we should have to relate the right side of these theorems to a composition of a converse (cf. dfcoss3 38412) or to the range of a range Cartesian product of classes (cf. dfcoss4 38413), which would make the theorems complicated and confusing. Alternate definition is dfcoss2 38411. Technically, we can define it via composition (dfcoss3 38412) or as the range of a range Cartesian product (dfcoss4 38413), but neither of these definitions reveal directly how the cosets by 𝑅 relate to each other. We define functions (df-funsALTV 38680, df-funALTV 38681) and disjoints (dfdisjs 38707, dfdisjs2 38708, df-disjALTV 38704, dfdisjALTV2 38713) with the help of it as well. (Contributed by Peter Mazsa, 9-Jan-2018.)

Assertion
Ref Expression
df-coss 𝑅 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦)}
Distinct variable group:   𝑢,𝑅,𝑥,𝑦

Detailed syntax breakdown of Definition df-coss
StepHypRef Expression
1 cR . . 3 class 𝑅
21ccoss 38176 . 2 class 𝑅
3 vu . . . . . . 7 setvar 𝑢
43cv 1539 . . . . . 6 class 𝑢
5 vx . . . . . . 7 setvar 𝑥
65cv 1539 . . . . . 6 class 𝑥
74, 6, 1wbr 5110 . . . . 5 wff 𝑢𝑅𝑥
8 vy . . . . . . 7 setvar 𝑦
98cv 1539 . . . . . 6 class 𝑦
104, 9, 1wbr 5110 . . . . 5 wff 𝑢𝑅𝑦
117, 10wa 395 . . . 4 wff (𝑢𝑅𝑥𝑢𝑅𝑦)
1211, 3wex 1779 . . 3 wff 𝑢(𝑢𝑅𝑥𝑢𝑅𝑦)
1312, 5, 8copab 5172 . 2 class {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦)}
142, 13wceq 1540 1 wff 𝑅 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦)}
Colors of variables: wff setvar class
This definition is referenced by:  dfcoss2  38411  dfcoss3  38412  dfcoss4  38413  cosscnv  38414  coss1cnvres  38415  relcoss  38421  cossss  38423  cosseq  38424  1cossres  38427  brcoss  38429  cossssid2  38466  cossid  38478
  Copyright terms: Public domain W3C validator