Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-coss Structured version   Visualization version   GIF version

Definition df-coss 38427
Description: Define the class of cosets by 𝑅: 𝑥 and 𝑦 are cosets by 𝑅 iff there exists a set 𝑢 such that both 𝑢𝑅𝑥 and 𝑢𝑅𝑦 hold, i.e., both 𝑥 and 𝑦 are are elements of the 𝑅 -coset of 𝑢 (see dfcoss2 38429 and the comment of dfec2 8620). 𝑅 is usually a relation.

This concept simplifies theorems relating partition and equivalence: the left side of these theorems relate to 𝑅, the right side relate to 𝑅 (see e.g. pet 38868). Without the definition of 𝑅 we should have to relate the right side of these theorems to a composition of a converse (cf. dfcoss3 38430) or to the range of a range Cartesian product of classes (cf. dfcoss4 38431), which would make the theorems complicated and confusing. Alternate definition is dfcoss2 38429. Technically, we can define it via composition (dfcoss3 38430) or as the range of a range Cartesian product (dfcoss4 38431), but neither of these definitions reveal directly how the cosets by 𝑅 relate to each other. We define functions (df-funsALTV 38698, df-funALTV 38699) and disjoints (dfdisjs 38725, dfdisjs2 38726, df-disjALTV 38722, dfdisjALTV2 38731) with the help of it as well. (Contributed by Peter Mazsa, 9-Jan-2018.)

Assertion
Ref Expression
df-coss 𝑅 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦)}
Distinct variable group:   𝑢,𝑅,𝑥,𝑦

Detailed syntax breakdown of Definition df-coss
StepHypRef Expression
1 cR . . 3 class 𝑅
21ccoss 38194 . 2 class 𝑅
3 vu . . . . . . 7 setvar 𝑢
43cv 1540 . . . . . 6 class 𝑢
5 vx . . . . . . 7 setvar 𝑥
65cv 1540 . . . . . 6 class 𝑥
74, 6, 1wbr 5089 . . . . 5 wff 𝑢𝑅𝑥
8 vy . . . . . . 7 setvar 𝑦
98cv 1540 . . . . . 6 class 𝑦
104, 9, 1wbr 5089 . . . . 5 wff 𝑢𝑅𝑦
117, 10wa 395 . . . 4 wff (𝑢𝑅𝑥𝑢𝑅𝑦)
1211, 3wex 1780 . . 3 wff 𝑢(𝑢𝑅𝑥𝑢𝑅𝑦)
1312, 5, 8copab 5151 . 2 class {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦)}
142, 13wceq 1541 1 wff 𝑅 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦)}
Colors of variables: wff setvar class
This definition is referenced by:  dfcoss2  38429  dfcoss3  38430  dfcoss4  38431  cosscnv  38432  coss1cnvres  38433  relcoss  38439  cossss  38441  cosseq  38442  1cossres  38445  brcoss  38447  cossssid2  38484  cossid  38496
  Copyright terms: Public domain W3C validator