Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-coss Structured version   Visualization version   GIF version

Definition df-coss 38402
Description: Define the class of cosets by 𝑅: 𝑥 and 𝑦 are cosets by 𝑅 iff there exists a set 𝑢 such that both 𝑢𝑅𝑥 and 𝑢𝑅𝑦 hold, i.e., both 𝑥 and 𝑦 are are elements of the 𝑅 -coset of 𝑢 (see dfcoss2 38404 and the comment of dfec2 8674). 𝑅 is usually a relation.

This concept simplifies theorems relating partition and equivalence: the left side of these theorems relate to 𝑅, the right side relate to 𝑅 (see e.g. pet 38843). Without the definition of 𝑅 we should have to relate the right side of these theorems to a composition of a converse (cf. dfcoss3 38405) or to the range of a range Cartesian product of classes (cf. dfcoss4 38406), which would make the theorems complicated and confusing. Alternate definition is dfcoss2 38404. Technically, we can define it via composition (dfcoss3 38405) or as the range of a range Cartesian product (dfcoss4 38406), but neither of these definitions reveal directly how the cosets by 𝑅 relate to each other. We define functions (df-funsALTV 38673, df-funALTV 38674) and disjoints (dfdisjs 38700, dfdisjs2 38701, df-disjALTV 38697, dfdisjALTV2 38706) with the help of it as well. (Contributed by Peter Mazsa, 9-Jan-2018.)

Assertion
Ref Expression
df-coss 𝑅 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦)}
Distinct variable group:   𝑢,𝑅,𝑥,𝑦

Detailed syntax breakdown of Definition df-coss
StepHypRef Expression
1 cR . . 3 class 𝑅
21ccoss 38169 . 2 class 𝑅
3 vu . . . . . . 7 setvar 𝑢
43cv 1539 . . . . . 6 class 𝑢
5 vx . . . . . . 7 setvar 𝑥
65cv 1539 . . . . . 6 class 𝑥
74, 6, 1wbr 5107 . . . . 5 wff 𝑢𝑅𝑥
8 vy . . . . . . 7 setvar 𝑦
98cv 1539 . . . . . 6 class 𝑦
104, 9, 1wbr 5107 . . . . 5 wff 𝑢𝑅𝑦
117, 10wa 395 . . . 4 wff (𝑢𝑅𝑥𝑢𝑅𝑦)
1211, 3wex 1779 . . 3 wff 𝑢(𝑢𝑅𝑥𝑢𝑅𝑦)
1312, 5, 8copab 5169 . 2 class {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦)}
142, 13wceq 1540 1 wff 𝑅 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦)}
Colors of variables: wff setvar class
This definition is referenced by:  dfcoss2  38404  dfcoss3  38405  dfcoss4  38406  cosscnv  38407  coss1cnvres  38408  relcoss  38414  cossss  38416  cosseq  38417  1cossres  38420  brcoss  38422  cossssid2  38459  cossid  38471
  Copyright terms: Public domain W3C validator