![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cosseqd | Structured version Visualization version GIF version |
Description: Equality theorem for the classes of cosets by 𝐴 and 𝐵, deduction form. (Contributed by Peter Mazsa, 4-Nov-2019.) |
Ref | Expression |
---|---|
cosseqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
cosseqd | ⊢ (𝜑 → ≀ 𝐴 = ≀ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cosseqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | cosseq 38382 | . 2 ⊢ (𝐴 = 𝐵 → ≀ 𝐴 = ≀ 𝐵) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ≀ 𝐴 = ≀ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ≀ ccoss 38135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-br 5167 df-opab 5229 df-coss 38367 |
This theorem is referenced by: relbrcoss 38402 elcoeleqvrels 38551 releldmqscoss 38616 eldisjs 38678 |
Copyright terms: Public domain | W3C validator |