Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cosseqd Structured version   Visualization version   GIF version

Theorem cosseqd 37298
Description: Equality theorem for the classes of cosets by 𝐴 and 𝐵, deduction form. (Contributed by Peter Mazsa, 4-Nov-2019.)
Hypothesis
Ref Expression
cosseqd.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
cosseqd (𝜑 → ≀ 𝐴 = ≀ 𝐵)

Proof of Theorem cosseqd
StepHypRef Expression
1 cosseqd.1 . 2 (𝜑𝐴 = 𝐵)
2 cosseq 37296 . 2 (𝐴 = 𝐵 → ≀ 𝐴 = ≀ 𝐵)
31, 2syl 17 1 (𝜑 → ≀ 𝐴 = ≀ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  ccoss 37043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-br 5150  df-opab 5212  df-coss 37281
This theorem is referenced by:  relbrcoss  37316  elcoeleqvrels  37465  releldmqscoss  37530  eldisjs  37592
  Copyright terms: Public domain W3C validator