| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cosseqd | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the classes of cosets by 𝐴 and 𝐵, deduction form. (Contributed by Peter Mazsa, 4-Nov-2019.) |
| Ref | Expression |
|---|---|
| cosseqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| cosseqd | ⊢ (𝜑 → ≀ 𝐴 = ≀ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cosseqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | cosseq 38424 | . 2 ⊢ (𝐴 = 𝐵 → ≀ 𝐴 = ≀ 𝐵) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ≀ 𝐴 = ≀ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ≀ ccoss 38176 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-br 5111 df-opab 5173 df-coss 38409 |
| This theorem is referenced by: relbrcoss 38444 elcoeleqvrels 38593 releldmqscoss 38659 eldisjs 38721 |
| Copyright terms: Public domain | W3C validator |