![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cosseqd | Structured version Visualization version GIF version |
Description: Equality theorem for the classes of cosets by 𝐴 and 𝐵, deduction form. (Contributed by Peter Mazsa, 4-Nov-2019.) |
Ref | Expression |
---|---|
cosseqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
cosseqd | ⊢ (𝜑 → ≀ 𝐴 = ≀ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cosseqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | cosseq 37760 | . 2 ⊢ (𝐴 = 𝐵 → ≀ 𝐴 = ≀ 𝐵) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ≀ 𝐴 = ≀ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ≀ ccoss 37507 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-br 5149 df-opab 5211 df-coss 37745 |
This theorem is referenced by: relbrcoss 37780 elcoeleqvrels 37929 releldmqscoss 37994 eldisjs 38056 |
Copyright terms: Public domain | W3C validator |