Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > csbconstgf | Structured version Visualization version GIF version |
Description: Substitution doesn't affect a constant 𝐵 (in which 𝑥 is not free). (Contributed by NM, 10-Nov-2005.) |
Ref | Expression |
---|---|
csbconstgf.1 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
csbconstgf | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbconstgf.1 | . 2 ⊢ Ⅎ𝑥𝐵 | |
2 | csbtt 3845 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ Ⅎ𝑥𝐵) → ⦋𝐴 / 𝑥⦌𝐵 = 𝐵) | |
3 | 1, 2 | mpan2 687 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 Ⅎwnfc 2886 ⦋csb 3828 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-sbc 3712 df-csb 3829 |
This theorem is referenced by: csbconstgOLD 3848 poimirlem25 35729 |
Copyright terms: Public domain | W3C validator |