![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csbconstgf | Structured version Visualization version GIF version |
Description: Substitution doesn't affect a constant 𝐵 (in which 𝑥 is not free). (Contributed by NM, 10-Nov-2005.) |
Ref | Expression |
---|---|
csbconstgf.1 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
csbconstgf | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbconstgf.1 | . 2 ⊢ Ⅎ𝑥𝐵 | |
2 | csbtt 3693 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ Ⅎ𝑥𝐵) → ⦋𝐴 / 𝑥⦌𝐵 = 𝐵) | |
3 | 1, 2 | mpan2 671 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1631 ∈ wcel 2145 Ⅎwnfc 2900 ⦋csb 3682 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-v 3353 df-sbc 3588 df-csb 3683 |
This theorem is referenced by: csbconstg 3695 fmptdF 29796 poimirlem25 33766 |
Copyright terms: Public domain | W3C validator |