MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbconstgf Structured version   Visualization version   GIF version

Theorem csbconstgf 3939
Description: Substitution doesn't affect a constant 𝐵 (in which 𝑥 is not free). (Contributed by NM, 10-Nov-2005.)
Hypothesis
Ref Expression
csbconstgf.1 𝑥𝐵
Assertion
Ref Expression
csbconstgf (𝐴𝑉𝐴 / 𝑥𝐵 = 𝐵)

Proof of Theorem csbconstgf
StepHypRef Expression
1 csbconstgf.1 . 2 𝑥𝐵
2 csbtt 3938 . 2 ((𝐴𝑉𝑥𝐵) → 𝐴 / 𝑥𝐵 = 𝐵)
31, 2mpan2 690 1 (𝐴𝑉𝐴 / 𝑥𝐵 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  wnfc 2893  csb 3921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-sbc 3805  df-csb 3922
This theorem is referenced by:  csbconstgOLD  3941  poimirlem25  37607
  Copyright terms: Public domain W3C validator