MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbtt Structured version   Visualization version   GIF version

Theorem csbtt 3828
Description: Substitution doesn't affect a constant 𝐵 (in which 𝑥 is not free). (Contributed by Mario Carneiro, 14-Oct-2016.)
Assertion
Ref Expression
csbtt ((𝐴𝑉𝑥𝐵) → 𝐴 / 𝑥𝐵 = 𝐵)

Proof of Theorem csbtt
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-csb 3812 . 2 𝐴 / 𝑥𝐵 = {𝑦[𝐴 / 𝑥]𝑦𝐵}
2 nfcr 2889 . . . 4 (𝑥𝐵 → Ⅎ𝑥 𝑦𝐵)
3 sbctt 3771 . . . 4 ((𝐴𝑉 ∧ Ⅎ𝑥 𝑦𝐵) → ([𝐴 / 𝑥]𝑦𝐵𝑦𝐵))
42, 3sylan2 596 . . 3 ((𝐴𝑉𝑥𝐵) → ([𝐴 / 𝑥]𝑦𝐵𝑦𝐵))
54abbi1dv 2875 . 2 ((𝐴𝑉𝑥𝐵) → {𝑦[𝐴 / 𝑥]𝑦𝐵} = 𝐵)
61, 5eqtrid 2789 1 ((𝐴𝑉𝑥𝐵) → 𝐴 / 𝑥𝐵 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wnf 1791  wcel 2110  {cab 2714  wnfc 2884  [wsbc 3694  csb 3811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-12 2175  ax-ext 2708
This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1546  df-ex 1788  df-nf 1792  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-sbc 3695  df-csb 3812
This theorem is referenced by:  csbconstgf  3829  sbnfc2  4351  csbie2df  4355  constlimc  42840
  Copyright terms: Public domain W3C validator