MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbtt Structured version   Visualization version   GIF version

Theorem csbtt 3882
Description: Substitution doesn't affect a constant 𝐵 (in which 𝑥 is not free). (Contributed by Mario Carneiro, 14-Oct-2016.)
Assertion
Ref Expression
csbtt ((𝐴𝑉𝑥𝐵) → 𝐴 / 𝑥𝐵 = 𝐵)

Proof of Theorem csbtt
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-csb 3866 . 2 𝐴 / 𝑥𝐵 = {𝑦[𝐴 / 𝑥]𝑦𝐵}
2 nfcr 2882 . . . 4 (𝑥𝐵 → Ⅎ𝑥 𝑦𝐵)
3 sbctt 3826 . . . 4 ((𝐴𝑉 ∧ Ⅎ𝑥 𝑦𝐵) → ([𝐴 / 𝑥]𝑦𝐵𝑦𝐵))
42, 3sylan2 593 . . 3 ((𝐴𝑉𝑥𝐵) → ([𝐴 / 𝑥]𝑦𝐵𝑦𝐵))
54eqabcdv 2863 . 2 ((𝐴𝑉𝑥𝐵) → {𝑦[𝐴 / 𝑥]𝑦𝐵} = 𝐵)
61, 5eqtrid 2777 1 ((𝐴𝑉𝑥𝐵) → 𝐴 / 𝑥𝐵 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wnf 1783  wcel 2109  {cab 2708  wnfc 2877  [wsbc 3756  csb 3865
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-sbc 3757  df-csb 3866
This theorem is referenced by:  csbconstgf  3883  sbnfc2  4405  csbie2df  4409  constlimc  45629
  Copyright terms: Public domain W3C validator