MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbtt Structured version   Visualization version   GIF version

Theorem csbtt 3826
Description: Substitution doesn't affect a constant 𝐵 (in which 𝑥 is not free). (Contributed by Mario Carneiro, 14-Oct-2016.)
Assertion
Ref Expression
csbtt ((𝐴𝑉𝑥𝐵) → 𝐴 / 𝑥𝐵 = 𝐵)

Proof of Theorem csbtt
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-csb 3812 . 2 𝐴 / 𝑥𝐵 = {𝑦[𝐴 / 𝑥]𝑦𝐵}
2 nfcr 2938 . . . 4 (𝑥𝐵 → Ⅎ𝑥 𝑦𝐵)
3 sbctt 3772 . . . 4 ((𝐴𝑉 ∧ Ⅎ𝑥 𝑦𝐵) → ([𝐴 / 𝑥]𝑦𝐵𝑦𝐵))
42, 3sylan2 592 . . 3 ((𝐴𝑉𝑥𝐵) → ([𝐴 / 𝑥]𝑦𝐵𝑦𝐵))
54abbi1dv 2921 . 2 ((𝐴𝑉𝑥𝐵) → {𝑦[𝐴 / 𝑥]𝑦𝐵} = 𝐵)
61, 5syl5eq 2843 1 ((𝐴𝑉𝑥𝐵) → 𝐴 / 𝑥𝐵 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1522  wnf 1765  wcel 2081  {cab 2775  wnfc 2933  [wsbc 3706  csb 3811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-12 2141  ax-ext 2769
This theorem depends on definitions:  df-bi 208  df-an 397  df-ex 1762  df-nf 1766  df-sb 2043  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-sbc 3707  df-csb 3812
This theorem is referenced by:  csbconstgf  3827  sbnfc2  4303  constlimc  41447
  Copyright terms: Public domain W3C validator