Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > csbtt | Structured version Visualization version GIF version |
Description: Substitution doesn't affect a constant 𝐵 (in which 𝑥 is not free). (Contributed by Mario Carneiro, 14-Oct-2016.) |
Ref | Expression |
---|---|
csbtt | ⊢ ((𝐴 ∈ 𝑉 ∧ Ⅎ𝑥𝐵) → ⦋𝐴 / 𝑥⦌𝐵 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-csb 3838 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} | |
2 | nfcr 2890 | . . . 4 ⊢ (Ⅎ𝑥𝐵 → Ⅎ𝑥 𝑦 ∈ 𝐵) | |
3 | sbctt 3797 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ Ⅎ𝑥 𝑦 ∈ 𝐵) → ([𝐴 / 𝑥]𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐵)) | |
4 | 2, 3 | sylan2 594 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ Ⅎ𝑥𝐵) → ([𝐴 / 𝑥]𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐵)) |
5 | 4 | abbi1dv 2876 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ Ⅎ𝑥𝐵) → {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} = 𝐵) |
6 | 1, 5 | eqtrid 2788 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ Ⅎ𝑥𝐵) → ⦋𝐴 / 𝑥⦌𝐵 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1539 Ⅎwnf 1783 ∈ wcel 2104 {cab 2713 Ⅎwnfc 2885 [wsbc 3721 ⦋csb 3837 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-12 2169 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1542 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-sbc 3722 df-csb 3838 |
This theorem is referenced by: csbconstgf 3855 sbnfc2 4376 csbie2df 4380 constlimc 43394 |
Copyright terms: Public domain | W3C validator |