![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csbconstg | Structured version Visualization version GIF version |
Description: Substitution doesn't affect a constant 𝐵 (in which 𝑥 does not occur). csbconstgf 3908 with distinct variable requirement. (Contributed by Alan Sare, 22-Jul-2012.) Avoid ax-12 2166. (Revised by Gino Giotto, 15-Oct-2024.) |
Ref | Expression |
---|---|
csbconstg | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbeq1 3893 | . . 3 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐵) | |
2 | 1 | eqeq1d 2727 | . 2 ⊢ (𝑦 = 𝐴 → (⦋𝑦 / 𝑥⦌𝐵 = 𝐵 ↔ ⦋𝐴 / 𝑥⦌𝐵 = 𝐵)) |
3 | df-csb 3891 | . . 3 ⊢ ⦋𝑦 / 𝑥⦌𝐵 = {𝑧 ∣ [𝑦 / 𝑥]𝑧 ∈ 𝐵} | |
4 | sbcg 3853 | . . . . 5 ⊢ (𝑦 ∈ V → ([𝑦 / 𝑥]𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐵)) | |
5 | 4 | elv 3469 | . . . 4 ⊢ ([𝑦 / 𝑥]𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐵) |
6 | 5 | abbii 2795 | . . 3 ⊢ {𝑧 ∣ [𝑦 / 𝑥]𝑧 ∈ 𝐵} = {𝑧 ∣ 𝑧 ∈ 𝐵} |
7 | abid2 2863 | . . 3 ⊢ {𝑧 ∣ 𝑧 ∈ 𝐵} = 𝐵 | |
8 | 3, 6, 7 | 3eqtri 2757 | . 2 ⊢ ⦋𝑦 / 𝑥⦌𝐵 = 𝐵 |
9 | 2, 8 | vtoclg 3533 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1533 ∈ wcel 2098 {cab 2702 Vcvv 3463 [wsbc 3774 ⦋csb 3890 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-v 3465 df-sbc 3775 df-csb 3891 |
This theorem is referenced by: csbconstgi 3912 csb0 4408 sbcel1g 4414 sbceq1g 4415 sbcel2 4416 sbceq2g 4417 csbidm 4431 2nreu 4442 csbopg 4892 sbcbr 5203 sbcbr12g 5204 sbcbr1g 5205 sbcbr2g 5206 csbmpt12 5558 csbmpt2 5559 sbcrel 5781 csbcnvgALT 5886 csbres 5987 csbrn 6207 sbcfung 6576 csbfv12 6942 csbfv2g 6943 elfvmptrab 7031 csbov 7461 csbov12g 7462 csbov1g 7463 csbov2g 7464 csbfrecsg 8288 csbwrecsg 8325 csbwrdg 14526 gsummptif1n0 19925 coe1fzgsumdlem 22231 evl1gsumdlem 22284 opsbc2ie 32331 disjpreima 32431 esum2dlem 33781 csbrecsg 36877 csbrdgg 36878 csbmpo123 36880 f1omptsnlem 36885 relowlpssretop 36913 rdgeqoa 36919 csbfinxpg 36937 cdlemkid3N 40475 cdlemkid4 40476 cdlemk42 40483 minregex 43029 brtrclfv2 43222 cotrclrcl 43237 frege77 43435 onfrALTlem5 44046 onfrALTlem4 44047 onfrALTlem5VD 44389 onfrALTlem4VD 44390 csbsngVD 44397 csbxpgVD 44398 csbresgVD 44399 csbrngVD 44400 csbfv12gALTVD 44403 disjinfi 44629 eubrdm 46481 iccelpart 46836 |
Copyright terms: Public domain | W3C validator |