![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csbconstg | Structured version Visualization version GIF version |
Description: Substitution doesn't affect a constant 𝐵 (in which 𝑥 does not occur). csbconstgf 3939 with distinct variable requirement. (Contributed by Alan Sare, 22-Jul-2012.) Avoid ax-12 2178. (Revised by GG, 15-Oct-2024.) |
Ref | Expression |
---|---|
csbconstg | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbeq1 3924 | . . 3 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐵) | |
2 | 1 | eqeq1d 2742 | . 2 ⊢ (𝑦 = 𝐴 → (⦋𝑦 / 𝑥⦌𝐵 = 𝐵 ↔ ⦋𝐴 / 𝑥⦌𝐵 = 𝐵)) |
3 | df-csb 3922 | . . 3 ⊢ ⦋𝑦 / 𝑥⦌𝐵 = {𝑧 ∣ [𝑦 / 𝑥]𝑧 ∈ 𝐵} | |
4 | sbcg 3883 | . . . . 5 ⊢ (𝑦 ∈ V → ([𝑦 / 𝑥]𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐵)) | |
5 | 4 | elv 3493 | . . . 4 ⊢ ([𝑦 / 𝑥]𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐵) |
6 | 5 | abbii 2812 | . . 3 ⊢ {𝑧 ∣ [𝑦 / 𝑥]𝑧 ∈ 𝐵} = {𝑧 ∣ 𝑧 ∈ 𝐵} |
7 | abid2 2882 | . . 3 ⊢ {𝑧 ∣ 𝑧 ∈ 𝐵} = 𝐵 | |
8 | 3, 6, 7 | 3eqtri 2772 | . 2 ⊢ ⦋𝑦 / 𝑥⦌𝐵 = 𝐵 |
9 | 2, 8 | vtoclg 3566 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 {cab 2717 Vcvv 3488 [wsbc 3804 ⦋csb 3921 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-sbc 3805 df-csb 3922 |
This theorem is referenced by: csbconstgi 3943 csb0 4433 sbcel1g 4439 sbceq1g 4440 sbcel2 4441 sbceq2g 4442 csbidm 4456 2nreu 4467 csbopg 4915 sbcbr 5221 sbcbr12g 5222 sbcbr1g 5223 sbcbr2g 5224 csbmpt12 5576 csbmpt2 5577 sbcrel 5804 csbcnvgALT 5909 csbres 6012 csbrn 6234 sbcfung 6602 csbfv12 6968 csbfv2g 6969 elfvmptrab 7058 csbov 7493 csbov12g 7494 csbov1g 7495 csbov2g 7496 csbfrecsg 8325 csbwrecsg 8362 csbwrdg 14592 gsummptif1n0 20008 coe1fzgsumdlem 22328 evl1gsumdlem 22381 opsbc2ie 32504 disjpreima 32606 esum2dlem 34056 csbrecsg 37294 csbrdgg 37295 csbmpo123 37297 f1omptsnlem 37302 relowlpssretop 37330 rdgeqoa 37336 csbfinxpg 37354 cdlemkid3N 40890 cdlemkid4 40891 cdlemk42 40898 minregex 43496 brtrclfv2 43689 cotrclrcl 43704 frege77 43902 onfrALTlem5 44513 onfrALTlem4 44514 onfrALTlem5VD 44856 onfrALTlem4VD 44857 csbsngVD 44864 csbxpgVD 44865 csbresgVD 44866 csbrngVD 44867 csbfv12gALTVD 44870 disjinfi 45099 eubrdm 46951 iccelpart 47307 |
Copyright terms: Public domain | W3C validator |