![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csbconstg | Structured version Visualization version GIF version |
Description: Substitution doesn't affect a constant 𝐵 (in which 𝑥 does not occur). csbconstgf 3912 with distinct variable requirement. (Contributed by Alan Sare, 22-Jul-2012.) Avoid ax-12 2172. (Revised by Gino Giotto, 15-Oct-2024.) |
Ref | Expression |
---|---|
csbconstg | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbeq1 3897 | . . 3 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐵) | |
2 | 1 | eqeq1d 2735 | . 2 ⊢ (𝑦 = 𝐴 → (⦋𝑦 / 𝑥⦌𝐵 = 𝐵 ↔ ⦋𝐴 / 𝑥⦌𝐵 = 𝐵)) |
3 | df-csb 3895 | . . 3 ⊢ ⦋𝑦 / 𝑥⦌𝐵 = {𝑧 ∣ [𝑦 / 𝑥]𝑧 ∈ 𝐵} | |
4 | sbcg 3857 | . . . . 5 ⊢ (𝑦 ∈ V → ([𝑦 / 𝑥]𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐵)) | |
5 | 4 | elv 3481 | . . . 4 ⊢ ([𝑦 / 𝑥]𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐵) |
6 | 5 | abbii 2803 | . . 3 ⊢ {𝑧 ∣ [𝑦 / 𝑥]𝑧 ∈ 𝐵} = {𝑧 ∣ 𝑧 ∈ 𝐵} |
7 | abid2 2872 | . . 3 ⊢ {𝑧 ∣ 𝑧 ∈ 𝐵} = 𝐵 | |
8 | 3, 6, 7 | 3eqtri 2765 | . 2 ⊢ ⦋𝑦 / 𝑥⦌𝐵 = 𝐵 |
9 | 2, 8 | vtoclg 3557 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1542 ∈ wcel 2107 {cab 2710 Vcvv 3475 [wsbc 3778 ⦋csb 3894 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3477 df-sbc 3779 df-csb 3895 |
This theorem is referenced by: csbconstgi 3916 csb0 4408 sbcel1g 4414 sbceq1g 4415 sbcel2 4416 sbceq2g 4417 csbidm 4431 2nreu 4442 csbopg 4892 sbcbr 5204 sbcbr12g 5205 sbcbr1g 5206 sbcbr2g 5207 csbmpt12 5558 csbmpt2 5559 sbcrel 5781 csbcnvgALT 5885 csbres 5985 csbrn 6203 sbcfung 6573 csbfv12 6940 csbfv2g 6941 elfvmptrab 7027 csbov 7452 csbov12g 7453 csbov1g 7454 csbov2g 7455 csbfrecsg 8269 csbwrecsg 8306 csbwrdg 14494 gsummptif1n0 19834 coe1fzgsumdlem 21825 evl1gsumdlem 21875 opsbc2ie 31716 disjpreima 31815 esum2dlem 33090 csbrecsg 36209 csbrdgg 36210 csbmpo123 36212 f1omptsnlem 36217 relowlpssretop 36245 rdgeqoa 36251 csbfinxpg 36269 cdlemkid3N 39804 cdlemkid4 39805 cdlemk42 39812 minregex 42285 brtrclfv2 42478 cotrclrcl 42493 frege77 42691 onfrALTlem5 43303 onfrALTlem4 43304 onfrALTlem5VD 43646 onfrALTlem4VD 43647 csbsngVD 43654 csbxpgVD 43655 csbresgVD 43656 csbrngVD 43657 csbfv12gALTVD 43660 disjinfi 43891 eubrdm 45746 iccelpart 46101 |
Copyright terms: Public domain | W3C validator |