| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbconstg | Structured version Visualization version GIF version | ||
| Description: Substitution doesn't affect a constant 𝐵 (in which 𝑥 does not occur). csbconstgf 3871 with distinct variable requirement. (Contributed by Alan Sare, 22-Jul-2012.) Avoid ax-12 2178. (Revised by GG, 15-Oct-2024.) |
| Ref | Expression |
|---|---|
| csbconstg | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbeq1 3856 | . . 3 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐵) | |
| 2 | 1 | eqeq1d 2731 | . 2 ⊢ (𝑦 = 𝐴 → (⦋𝑦 / 𝑥⦌𝐵 = 𝐵 ↔ ⦋𝐴 / 𝑥⦌𝐵 = 𝐵)) |
| 3 | df-csb 3854 | . . 3 ⊢ ⦋𝑦 / 𝑥⦌𝐵 = {𝑧 ∣ [𝑦 / 𝑥]𝑧 ∈ 𝐵} | |
| 4 | sbcg 3817 | . . . . 5 ⊢ (𝑦 ∈ V → ([𝑦 / 𝑥]𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐵)) | |
| 5 | 4 | elv 3443 | . . . 4 ⊢ ([𝑦 / 𝑥]𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐵) |
| 6 | 5 | abbii 2796 | . . 3 ⊢ {𝑧 ∣ [𝑦 / 𝑥]𝑧 ∈ 𝐵} = {𝑧 ∣ 𝑧 ∈ 𝐵} |
| 7 | abid2 2865 | . . 3 ⊢ {𝑧 ∣ 𝑧 ∈ 𝐵} = 𝐵 | |
| 8 | 3, 6, 7 | 3eqtri 2756 | . 2 ⊢ ⦋𝑦 / 𝑥⦌𝐵 = 𝐵 |
| 9 | 2, 8 | vtoclg 3511 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {cab 2707 Vcvv 3438 [wsbc 3744 ⦋csb 3853 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3440 df-sbc 3745 df-csb 3854 |
| This theorem is referenced by: csbconstgi 3874 csb0 4363 sbcel1g 4369 sbceq1g 4370 sbcel2 4371 sbceq2g 4372 csbidm 4386 2nreu 4397 csbopg 4845 sbcbr 5150 sbcbr12g 5151 sbcbr1g 5152 sbcbr2g 5153 csbmpt12 5504 csbmpt2 5505 sbcrel 5728 csbcnvgALT 5831 csbres 5937 csbrn 6156 sbcfung 6510 csbfv12 6872 csbfv2g 6873 elfvmptrab 6963 csbov 7398 csbov12g 7399 csbov1g 7400 csbov2g 7401 csbfrecsg 8224 csbwrecsg 8258 csbwrdg 14469 gsummptif1n0 19863 coe1fzgsumdlem 22206 evl1gsumdlem 22259 opsbc2ie 32438 disjpreima 32546 esum2dlem 34058 csbrecsg 37301 csbrdgg 37302 csbmpo123 37304 f1omptsnlem 37309 relowlpssretop 37337 rdgeqoa 37343 csbfinxpg 37361 cdlemkid3N 40912 cdlemkid4 40913 cdlemk42 40920 minregex 43507 brtrclfv2 43700 cotrclrcl 43715 frege77 43913 onfrALTlem5 44516 onfrALTlem4 44517 onfrALTlem5VD 44858 onfrALTlem4VD 44859 csbsngVD 44866 csbxpgVD 44867 csbresgVD 44868 csbrngVD 44869 csbfv12gALTVD 44872 disjinfi 45170 eubrdm 47021 iccelpart 47418 |
| Copyright terms: Public domain | W3C validator |