MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbconstg Structured version   Visualization version   GIF version

Theorem csbconstg 3856
Description: Substitution doesn't affect a constant 𝐵 (in which 𝑥 does not occur). csbconstgf 3855 with distinct variable requirement. (Contributed by Alan Sare, 22-Jul-2012.) Avoid ax-12 2169. (Revised by Gino Giotto, 15-Oct-2024.)
Assertion
Ref Expression
csbconstg (𝐴𝑉𝐴 / 𝑥𝐵 = 𝐵)
Distinct variable group:   𝑥,𝐵
Allowed substitution hints:   𝐴(𝑥)   𝑉(𝑥)

Proof of Theorem csbconstg
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 csbeq1 3840 . . 3 (𝑦 = 𝐴𝑦 / 𝑥𝐵 = 𝐴 / 𝑥𝐵)
21eqeq1d 2738 . 2 (𝑦 = 𝐴 → (𝑦 / 𝑥𝐵 = 𝐵𝐴 / 𝑥𝐵 = 𝐵))
3 df-csb 3838 . . 3 𝑦 / 𝑥𝐵 = {𝑧[𝑦 / 𝑥]𝑧𝐵}
4 sbcg 3800 . . . . 5 (𝑦 ∈ V → ([𝑦 / 𝑥]𝑧𝐵𝑧𝐵))
54elv 3443 . . . 4 ([𝑦 / 𝑥]𝑧𝐵𝑧𝐵)
65abbii 2806 . . 3 {𝑧[𝑦 / 𝑥]𝑧𝐵} = {𝑧𝑧𝐵}
7 abid2 2880 . . 3 {𝑧𝑧𝐵} = 𝐵
83, 6, 73eqtri 2768 . 2 𝑦 / 𝑥𝐵 = 𝐵
92, 8vtoclg 3510 1 (𝐴𝑉𝐴 / 𝑥𝐵 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2104  {cab 2713  Vcvv 3437  [wsbc 3721  csb 3837
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1542  df-ex 1780  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-v 3439  df-sbc 3722  df-csb 3838
This theorem is referenced by:  csbconstgi  3859  csb0  4347  sbcel1g  4353  sbceq1g  4354  sbcel2  4355  sbceq2g  4356  csbidm  4370  2nreu  4381  csbopg  4827  sbcbr  5136  sbcbr12g  5137  sbcbr1g  5138  sbcbr2g  5139  csbmpt12  5483  csbmpt2  5484  sbcrel  5702  csbcnvgALT  5806  csbres  5906  csbrn  6121  sbcfung  6487  csbfv12  6849  csbfv2g  6850  elfvmptrab  6935  csbov  7350  csbov12g  7351  csbov1g  7352  csbov2g  7353  csbfrecsg  8131  csbwrecsg  8168  csbwrdg  14292  gsummptif1n0  19612  coe1fzgsumdlem  21517  evl1gsumdlem  21567  opsbc2ie  30869  disjpreima  30968  esum2dlem  32105  csbrecsg  35543  csbrdgg  35544  csbmpo123  35546  f1omptsnlem  35551  relowlpssretop  35579  rdgeqoa  35585  csbfinxpg  35603  cdlemkid3N  38989  cdlemkid4  38990  cdlemk42  38997  minregex  41179  brtrclfv2  41373  cotrclrcl  41388  frege77  41586  onfrALTlem5  42200  onfrALTlem4  42201  onfrALTlem5VD  42543  onfrALTlem4VD  42544  csbsngVD  42551  csbxpgVD  42552  csbresgVD  42553  csbrngVD  42554  csbfv12gALTVD  42557  disjinfi  42775  eubrdm  44588  iccelpart  44943
  Copyright terms: Public domain W3C validator