| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbconstg | Structured version Visualization version GIF version | ||
| Description: Substitution doesn't affect a constant 𝐵 (in which 𝑥 does not occur). csbconstgf 3883 with distinct variable requirement. (Contributed by Alan Sare, 22-Jul-2012.) Avoid ax-12 2178. (Revised by GG, 15-Oct-2024.) |
| Ref | Expression |
|---|---|
| csbconstg | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbeq1 3868 | . . 3 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐵) | |
| 2 | 1 | eqeq1d 2732 | . 2 ⊢ (𝑦 = 𝐴 → (⦋𝑦 / 𝑥⦌𝐵 = 𝐵 ↔ ⦋𝐴 / 𝑥⦌𝐵 = 𝐵)) |
| 3 | df-csb 3866 | . . 3 ⊢ ⦋𝑦 / 𝑥⦌𝐵 = {𝑧 ∣ [𝑦 / 𝑥]𝑧 ∈ 𝐵} | |
| 4 | sbcg 3829 | . . . . 5 ⊢ (𝑦 ∈ V → ([𝑦 / 𝑥]𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐵)) | |
| 5 | 4 | elv 3455 | . . . 4 ⊢ ([𝑦 / 𝑥]𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐵) |
| 6 | 5 | abbii 2797 | . . 3 ⊢ {𝑧 ∣ [𝑦 / 𝑥]𝑧 ∈ 𝐵} = {𝑧 ∣ 𝑧 ∈ 𝐵} |
| 7 | abid2 2866 | . . 3 ⊢ {𝑧 ∣ 𝑧 ∈ 𝐵} = 𝐵 | |
| 8 | 3, 6, 7 | 3eqtri 2757 | . 2 ⊢ ⦋𝑦 / 𝑥⦌𝐵 = 𝐵 |
| 9 | 2, 8 | vtoclg 3523 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {cab 2708 Vcvv 3450 [wsbc 3756 ⦋csb 3865 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-sbc 3757 df-csb 3866 |
| This theorem is referenced by: csbconstgi 3886 csb0 4376 sbcel1g 4382 sbceq1g 4383 sbcel2 4384 sbceq2g 4385 csbidm 4399 2nreu 4410 csbopg 4858 sbcbr 5165 sbcbr12g 5166 sbcbr1g 5167 sbcbr2g 5168 csbmpt12 5520 csbmpt2 5521 sbcrel 5746 csbcnvgALT 5851 csbres 5956 csbrn 6179 sbcfung 6543 csbfv12 6909 csbfv2g 6910 elfvmptrab 7000 csbov 7435 csbov12g 7436 csbov1g 7437 csbov2g 7438 csbfrecsg 8266 csbwrecsg 8300 csbwrdg 14516 gsummptif1n0 19903 coe1fzgsumdlem 22197 evl1gsumdlem 22250 opsbc2ie 32412 disjpreima 32520 esum2dlem 34089 csbrecsg 37323 csbrdgg 37324 csbmpo123 37326 f1omptsnlem 37331 relowlpssretop 37359 rdgeqoa 37365 csbfinxpg 37383 cdlemkid3N 40934 cdlemkid4 40935 cdlemk42 40942 minregex 43530 brtrclfv2 43723 cotrclrcl 43738 frege77 43936 onfrALTlem5 44539 onfrALTlem4 44540 onfrALTlem5VD 44881 onfrALTlem4VD 44882 csbsngVD 44889 csbxpgVD 44890 csbresgVD 44891 csbrngVD 44892 csbfv12gALTVD 44895 disjinfi 45193 eubrdm 47041 iccelpart 47438 |
| Copyright terms: Public domain | W3C validator |