Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > csbconstg | Structured version Visualization version GIF version |
Description: Substitution doesn't affect a constant 𝐵 (in which 𝑥 does not occur). csbconstgf 3855 with distinct variable requirement. (Contributed by Alan Sare, 22-Jul-2012.) Avoid ax-12 2169. (Revised by Gino Giotto, 15-Oct-2024.) |
Ref | Expression |
---|---|
csbconstg | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbeq1 3840 | . . 3 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐵) | |
2 | 1 | eqeq1d 2738 | . 2 ⊢ (𝑦 = 𝐴 → (⦋𝑦 / 𝑥⦌𝐵 = 𝐵 ↔ ⦋𝐴 / 𝑥⦌𝐵 = 𝐵)) |
3 | df-csb 3838 | . . 3 ⊢ ⦋𝑦 / 𝑥⦌𝐵 = {𝑧 ∣ [𝑦 / 𝑥]𝑧 ∈ 𝐵} | |
4 | sbcg 3800 | . . . . 5 ⊢ (𝑦 ∈ V → ([𝑦 / 𝑥]𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐵)) | |
5 | 4 | elv 3443 | . . . 4 ⊢ ([𝑦 / 𝑥]𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐵) |
6 | 5 | abbii 2806 | . . 3 ⊢ {𝑧 ∣ [𝑦 / 𝑥]𝑧 ∈ 𝐵} = {𝑧 ∣ 𝑧 ∈ 𝐵} |
7 | abid2 2880 | . . 3 ⊢ {𝑧 ∣ 𝑧 ∈ 𝐵} = 𝐵 | |
8 | 3, 6, 7 | 3eqtri 2768 | . 2 ⊢ ⦋𝑦 / 𝑥⦌𝐵 = 𝐵 |
9 | 2, 8 | vtoclg 3510 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2104 {cab 2713 Vcvv 3437 [wsbc 3721 ⦋csb 3837 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-v 3439 df-sbc 3722 df-csb 3838 |
This theorem is referenced by: csbconstgi 3859 csb0 4347 sbcel1g 4353 sbceq1g 4354 sbcel2 4355 sbceq2g 4356 csbidm 4370 2nreu 4381 csbopg 4827 sbcbr 5136 sbcbr12g 5137 sbcbr1g 5138 sbcbr2g 5139 csbmpt12 5483 csbmpt2 5484 sbcrel 5702 csbcnvgALT 5806 csbres 5906 csbrn 6121 sbcfung 6487 csbfv12 6849 csbfv2g 6850 elfvmptrab 6935 csbov 7350 csbov12g 7351 csbov1g 7352 csbov2g 7353 csbfrecsg 8131 csbwrecsg 8168 csbwrdg 14292 gsummptif1n0 19612 coe1fzgsumdlem 21517 evl1gsumdlem 21567 opsbc2ie 30869 disjpreima 30968 esum2dlem 32105 csbrecsg 35543 csbrdgg 35544 csbmpo123 35546 f1omptsnlem 35551 relowlpssretop 35579 rdgeqoa 35585 csbfinxpg 35603 cdlemkid3N 38989 cdlemkid4 38990 cdlemk42 38997 minregex 41179 brtrclfv2 41373 cotrclrcl 41388 frege77 41586 onfrALTlem5 42200 onfrALTlem4 42201 onfrALTlem5VD 42543 onfrALTlem4VD 42544 csbsngVD 42551 csbxpgVD 42552 csbresgVD 42553 csbrngVD 42554 csbfv12gALTVD 42557 disjinfi 42775 eubrdm 44588 iccelpart 44943 |
Copyright terms: Public domain | W3C validator |