| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbconstg | Structured version Visualization version GIF version | ||
| Description: Substitution doesn't affect a constant 𝐵 (in which 𝑥 does not occur). csbconstgf 3866 with distinct variable requirement. (Contributed by Alan Sare, 22-Jul-2012.) Avoid ax-12 2179. (Revised by GG, 15-Oct-2024.) |
| Ref | Expression |
|---|---|
| csbconstg | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbeq1 3851 | . . 3 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐵) | |
| 2 | 1 | eqeq1d 2732 | . 2 ⊢ (𝑦 = 𝐴 → (⦋𝑦 / 𝑥⦌𝐵 = 𝐵 ↔ ⦋𝐴 / 𝑥⦌𝐵 = 𝐵)) |
| 3 | df-csb 3849 | . . 3 ⊢ ⦋𝑦 / 𝑥⦌𝐵 = {𝑧 ∣ [𝑦 / 𝑥]𝑧 ∈ 𝐵} | |
| 4 | sbcg 3812 | . . . . 5 ⊢ (𝑦 ∈ V → ([𝑦 / 𝑥]𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐵)) | |
| 5 | 4 | elv 3439 | . . . 4 ⊢ ([𝑦 / 𝑥]𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐵) |
| 6 | 5 | abbii 2797 | . . 3 ⊢ {𝑧 ∣ [𝑦 / 𝑥]𝑧 ∈ 𝐵} = {𝑧 ∣ 𝑧 ∈ 𝐵} |
| 7 | abid2 2866 | . . 3 ⊢ {𝑧 ∣ 𝑧 ∈ 𝐵} = 𝐵 | |
| 8 | 3, 6, 7 | 3eqtri 2757 | . 2 ⊢ ⦋𝑦 / 𝑥⦌𝐵 = 𝐵 |
| 9 | 2, 8 | vtoclg 3507 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2110 {cab 2708 Vcvv 3434 [wsbc 3739 ⦋csb 3848 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3436 df-sbc 3740 df-csb 3849 |
| This theorem is referenced by: csbconstgi 3869 csb0 4358 sbcel1g 4364 sbceq1g 4365 sbcel2 4366 sbceq2g 4367 csbidm 4381 2nreu 4392 csbopg 4841 sbcbr 5144 sbcbr12g 5145 sbcbr1g 5146 sbcbr2g 5147 csbmpt12 5495 csbmpt2 5496 sbcrel 5719 csbcnvgALT 5822 csbres 5928 csbrn 6147 sbcfung 6501 csbfv12 6862 csbfv2g 6863 elfvmptrab 6953 csbov 7386 csbov12g 7387 csbov1g 7388 csbov2g 7389 csbfrecsg 8209 csbwrecsg 8243 csbwrdg 14443 gsummptif1n0 19871 coe1fzgsumdlem 22211 evl1gsumdlem 22264 opsbc2ie 32445 disjpreima 32554 esum2dlem 34095 csbrecsg 37341 csbrdgg 37342 csbmpo123 37344 f1omptsnlem 37349 relowlpssretop 37377 rdgeqoa 37383 csbfinxpg 37401 cdlemkid3N 40951 cdlemkid4 40952 cdlemk42 40959 minregex 43546 brtrclfv2 43739 cotrclrcl 43754 frege77 43952 onfrALTlem5 44554 onfrALTlem4 44555 onfrALTlem5VD 44896 onfrALTlem4VD 44897 csbsngVD 44904 csbxpgVD 44905 csbresgVD 44906 csbrngVD 44907 csbfv12gALTVD 44910 disjinfi 45208 eubrdm 47046 iccelpart 47443 |
| Copyright terms: Public domain | W3C validator |