![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csbconstg | Structured version Visualization version GIF version |
Description: Substitution doesn't affect a constant 𝐵 (in which 𝑥 does not occur). csbconstgf 3926 with distinct variable requirement. (Contributed by Alan Sare, 22-Jul-2012.) Avoid ax-12 2175. (Revised by GG, 15-Oct-2024.) |
Ref | Expression |
---|---|
csbconstg | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbeq1 3911 | . . 3 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐵) | |
2 | 1 | eqeq1d 2737 | . 2 ⊢ (𝑦 = 𝐴 → (⦋𝑦 / 𝑥⦌𝐵 = 𝐵 ↔ ⦋𝐴 / 𝑥⦌𝐵 = 𝐵)) |
3 | df-csb 3909 | . . 3 ⊢ ⦋𝑦 / 𝑥⦌𝐵 = {𝑧 ∣ [𝑦 / 𝑥]𝑧 ∈ 𝐵} | |
4 | sbcg 3870 | . . . . 5 ⊢ (𝑦 ∈ V → ([𝑦 / 𝑥]𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐵)) | |
5 | 4 | elv 3483 | . . . 4 ⊢ ([𝑦 / 𝑥]𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐵) |
6 | 5 | abbii 2807 | . . 3 ⊢ {𝑧 ∣ [𝑦 / 𝑥]𝑧 ∈ 𝐵} = {𝑧 ∣ 𝑧 ∈ 𝐵} |
7 | abid2 2877 | . . 3 ⊢ {𝑧 ∣ 𝑧 ∈ 𝐵} = 𝐵 | |
8 | 3, 6, 7 | 3eqtri 2767 | . 2 ⊢ ⦋𝑦 / 𝑥⦌𝐵 = 𝐵 |
9 | 2, 8 | vtoclg 3554 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2106 {cab 2712 Vcvv 3478 [wsbc 3791 ⦋csb 3908 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-sbc 3792 df-csb 3909 |
This theorem is referenced by: csbconstgi 3930 csb0 4416 sbcel1g 4422 sbceq1g 4423 sbcel2 4424 sbceq2g 4425 csbidm 4439 2nreu 4450 csbopg 4896 sbcbr 5203 sbcbr12g 5204 sbcbr1g 5205 sbcbr2g 5206 csbmpt12 5567 csbmpt2 5568 sbcrel 5793 csbcnvgALT 5898 csbres 6003 csbrn 6225 sbcfung 6592 csbfv12 6955 csbfv2g 6956 elfvmptrab 7045 csbov 7476 csbov12g 7477 csbov1g 7478 csbov2g 7479 csbfrecsg 8308 csbwrecsg 8345 csbwrdg 14579 gsummptif1n0 19999 coe1fzgsumdlem 22323 evl1gsumdlem 22376 opsbc2ie 32504 disjpreima 32604 esum2dlem 34073 csbrecsg 37311 csbrdgg 37312 csbmpo123 37314 f1omptsnlem 37319 relowlpssretop 37347 rdgeqoa 37353 csbfinxpg 37371 cdlemkid3N 40916 cdlemkid4 40917 cdlemk42 40924 minregex 43524 brtrclfv2 43717 cotrclrcl 43732 frege77 43930 onfrALTlem5 44540 onfrALTlem4 44541 onfrALTlem5VD 44883 onfrALTlem4VD 44884 csbsngVD 44891 csbxpgVD 44892 csbresgVD 44893 csbrngVD 44894 csbfv12gALTVD 44897 disjinfi 45135 eubrdm 46986 iccelpart 47358 |
Copyright terms: Public domain | W3C validator |