Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > csbconstg | Structured version Visualization version GIF version |
Description: Substitution doesn't affect a constant 𝐵 (in which 𝑥 does not occur). csbconstgf 3854 with distinct variable requirement. (Contributed by Alan Sare, 22-Jul-2012.) Avoid ax-12 2174. (Revised by Gino Giotto, 15-Oct-2024.) |
Ref | Expression |
---|---|
csbconstg | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbeq1 3839 | . . 3 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐵) | |
2 | 1 | eqeq1d 2741 | . 2 ⊢ (𝑦 = 𝐴 → (⦋𝑦 / 𝑥⦌𝐵 = 𝐵 ↔ ⦋𝐴 / 𝑥⦌𝐵 = 𝐵)) |
3 | df-csb 3837 | . . 3 ⊢ ⦋𝑦 / 𝑥⦌𝐵 = {𝑧 ∣ [𝑦 / 𝑥]𝑧 ∈ 𝐵} | |
4 | sbcg 3799 | . . . . 5 ⊢ (𝑦 ∈ V → ([𝑦 / 𝑥]𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐵)) | |
5 | 4 | elv 3436 | . . . 4 ⊢ ([𝑦 / 𝑥]𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐵) |
6 | 5 | abbii 2809 | . . 3 ⊢ {𝑧 ∣ [𝑦 / 𝑥]𝑧 ∈ 𝐵} = {𝑧 ∣ 𝑧 ∈ 𝐵} |
7 | abid2 2883 | . . 3 ⊢ {𝑧 ∣ 𝑧 ∈ 𝐵} = 𝐵 | |
8 | 3, 6, 7 | 3eqtri 2771 | . 2 ⊢ ⦋𝑦 / 𝑥⦌𝐵 = 𝐵 |
9 | 2, 8 | vtoclg 3503 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 ∈ wcel 2109 {cab 2716 Vcvv 3430 [wsbc 3719 ⦋csb 3836 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1544 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-v 3432 df-sbc 3720 df-csb 3837 |
This theorem is referenced by: csbconstgi 3858 csb0 4346 sbcel1g 4352 sbceq1g 4353 sbcel2 4354 sbceq2g 4355 csbidm 4369 2nreu 4380 csbopg 4827 sbcbr 5133 sbcbr12g 5134 sbcbr1g 5135 sbcbr2g 5136 csbmpt12 5471 csbmpt2 5472 sbcrel 5689 csbcnvgALT 5790 csbres 5891 csbrn 6103 sbcfung 6454 csbfv12 6811 csbfv2g 6812 elfvmptrab 6897 csbov 7311 csbov12g 7312 csbov1g 7313 csbov2g 7314 csbfrecsg 8084 csbwrecsg 8121 csbwrdg 14228 gsummptif1n0 19548 coe1fzgsumdlem 21453 evl1gsumdlem 21503 opsbc2ie 30803 disjpreima 30902 esum2dlem 32039 csbrecsg 35478 csbrdgg 35479 csbmpo123 35481 f1omptsnlem 35486 relowlpssretop 35514 rdgeqoa 35520 csbfinxpg 35538 cdlemkid3N 38926 cdlemkid4 38927 cdlemk42 38934 brtrclfv2 41288 cotrclrcl 41303 frege77 41501 onfrALTlem5 42115 onfrALTlem4 42116 onfrALTlem5VD 42458 onfrALTlem4VD 42459 csbsngVD 42466 csbxpgVD 42467 csbresgVD 42468 csbrngVD 42469 csbfv12gALTVD 42472 disjinfi 42684 eubrdm 44481 iccelpart 44837 |
Copyright terms: Public domain | W3C validator |