![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csbconstg | Structured version Visualization version GIF version |
Description: Substitution doesn't affect a constant 𝐵 (in which 𝑥 does not occur). csbconstgf 3907 with distinct variable requirement. (Contributed by Alan Sare, 22-Jul-2012.) Avoid ax-12 2164. (Revised by Gino Giotto, 15-Oct-2024.) |
Ref | Expression |
---|---|
csbconstg | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbeq1 3892 | . . 3 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐵) | |
2 | 1 | eqeq1d 2729 | . 2 ⊢ (𝑦 = 𝐴 → (⦋𝑦 / 𝑥⦌𝐵 = 𝐵 ↔ ⦋𝐴 / 𝑥⦌𝐵 = 𝐵)) |
3 | df-csb 3890 | . . 3 ⊢ ⦋𝑦 / 𝑥⦌𝐵 = {𝑧 ∣ [𝑦 / 𝑥]𝑧 ∈ 𝐵} | |
4 | sbcg 3852 | . . . . 5 ⊢ (𝑦 ∈ V → ([𝑦 / 𝑥]𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐵)) | |
5 | 4 | elv 3475 | . . . 4 ⊢ ([𝑦 / 𝑥]𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐵) |
6 | 5 | abbii 2797 | . . 3 ⊢ {𝑧 ∣ [𝑦 / 𝑥]𝑧 ∈ 𝐵} = {𝑧 ∣ 𝑧 ∈ 𝐵} |
7 | abid2 2866 | . . 3 ⊢ {𝑧 ∣ 𝑧 ∈ 𝐵} = 𝐵 | |
8 | 3, 6, 7 | 3eqtri 2759 | . 2 ⊢ ⦋𝑦 / 𝑥⦌𝐵 = 𝐵 |
9 | 2, 8 | vtoclg 3538 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1534 ∈ wcel 2099 {cab 2704 Vcvv 3469 [wsbc 3774 ⦋csb 3889 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2698 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-v 3471 df-sbc 3775 df-csb 3890 |
This theorem is referenced by: csbconstgi 3911 csb0 4403 sbcel1g 4409 sbceq1g 4410 sbcel2 4411 sbceq2g 4412 csbidm 4426 2nreu 4437 csbopg 4887 sbcbr 5197 sbcbr12g 5198 sbcbr1g 5199 sbcbr2g 5200 csbmpt12 5553 csbmpt2 5554 sbcrel 5776 csbcnvgALT 5881 csbres 5982 csbrn 6201 sbcfung 6571 csbfv12 6939 csbfv2g 6940 elfvmptrab 7028 csbov 7457 csbov12g 7458 csbov1g 7459 csbov2g 7460 csbfrecsg 8283 csbwrecsg 8320 csbwrdg 14518 gsummptif1n0 19912 coe1fzgsumdlem 22209 evl1gsumdlem 22262 opsbc2ie 32260 disjpreima 32359 esum2dlem 33647 csbrecsg 36743 csbrdgg 36744 csbmpo123 36746 f1omptsnlem 36751 relowlpssretop 36779 rdgeqoa 36785 csbfinxpg 36803 cdlemkid3N 40343 cdlemkid4 40344 cdlemk42 40351 minregex 42887 brtrclfv2 43080 cotrclrcl 43095 frege77 43293 onfrALTlem5 43904 onfrALTlem4 43905 onfrALTlem5VD 44247 onfrALTlem4VD 44248 csbsngVD 44255 csbxpgVD 44256 csbresgVD 44257 csbrngVD 44258 csbfv12gALTVD 44261 disjinfi 44488 eubrdm 46341 iccelpart 46696 |
Copyright terms: Public domain | W3C validator |