| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbconstg | Structured version Visualization version GIF version | ||
| Description: Substitution doesn't affect a constant 𝐵 (in which 𝑥 does not occur). csbconstgf 3865 with distinct variable requirement. (Contributed by Alan Sare, 22-Jul-2012.) Avoid ax-12 2182. (Revised by GG, 15-Oct-2024.) |
| Ref | Expression |
|---|---|
| csbconstg | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbeq1 3850 | . . 3 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐵) | |
| 2 | 1 | eqeq1d 2735 | . 2 ⊢ (𝑦 = 𝐴 → (⦋𝑦 / 𝑥⦌𝐵 = 𝐵 ↔ ⦋𝐴 / 𝑥⦌𝐵 = 𝐵)) |
| 3 | df-csb 3848 | . . 3 ⊢ ⦋𝑦 / 𝑥⦌𝐵 = {𝑧 ∣ [𝑦 / 𝑥]𝑧 ∈ 𝐵} | |
| 4 | sbcg 3811 | . . . . 5 ⊢ (𝑦 ∈ V → ([𝑦 / 𝑥]𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐵)) | |
| 5 | 4 | elv 3443 | . . . 4 ⊢ ([𝑦 / 𝑥]𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐵) |
| 6 | 5 | abbii 2800 | . . 3 ⊢ {𝑧 ∣ [𝑦 / 𝑥]𝑧 ∈ 𝐵} = {𝑧 ∣ 𝑧 ∈ 𝐵} |
| 7 | abid2 2870 | . . 3 ⊢ {𝑧 ∣ 𝑧 ∈ 𝐵} = 𝐵 | |
| 8 | 3, 6, 7 | 3eqtri 2760 | . 2 ⊢ ⦋𝑦 / 𝑥⦌𝐵 = 𝐵 |
| 9 | 2, 8 | vtoclg 3509 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2113 {cab 2711 Vcvv 3438 [wsbc 3738 ⦋csb 3847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3440 df-sbc 3739 df-csb 3848 |
| This theorem is referenced by: csbconstgi 3868 csb0 4361 sbcel1g 4367 sbceq1g 4368 sbcel2 4369 sbceq2g 4370 csbidm 4384 2nreu 4395 csbopg 4844 sbcbr 5150 sbcbr12g 5151 sbcbr1g 5152 sbcbr2g 5153 csbmpt12 5502 csbmpt2 5503 sbcrel 5727 csbcnvgALT 5831 csbres 5938 csbrn 6158 sbcfung 6513 csbfv12 6876 csbfv2g 6877 elfvmptrab 6967 csbov 7400 csbov12g 7401 csbov1g 7402 csbov2g 7403 csbfrecsg 8223 csbwrecsg 8257 csbwrdg 14461 gsummptif1n0 19888 coe1fzgsumdlem 22228 evl1gsumdlem 22281 opsbc2ie 32466 disjpreima 32575 esum2dlem 34116 csbrecsg 37383 csbrdgg 37384 csbmpo123 37386 f1omptsnlem 37391 relowlpssretop 37419 rdgeqoa 37425 csbfinxpg 37443 cdlemkid3N 41042 cdlemkid4 41043 cdlemk42 41050 minregex 43641 brtrclfv2 43834 cotrclrcl 43849 frege77 44047 onfrALTlem5 44649 onfrALTlem4 44650 onfrALTlem5VD 44991 onfrALTlem4VD 44992 csbsngVD 44999 csbxpgVD 45000 csbresgVD 45001 csbrngVD 45002 csbfv12gALTVD 45005 disjinfi 45303 eubrdm 47150 iccelpart 47547 |
| Copyright terms: Public domain | W3C validator |