| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbconstg | Structured version Visualization version GIF version | ||
| Description: Substitution doesn't affect a constant 𝐵 (in which 𝑥 does not occur). csbconstgf 3880 with distinct variable requirement. (Contributed by Alan Sare, 22-Jul-2012.) Avoid ax-12 2178. (Revised by GG, 15-Oct-2024.) |
| Ref | Expression |
|---|---|
| csbconstg | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbeq1 3865 | . . 3 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐵) | |
| 2 | 1 | eqeq1d 2731 | . 2 ⊢ (𝑦 = 𝐴 → (⦋𝑦 / 𝑥⦌𝐵 = 𝐵 ↔ ⦋𝐴 / 𝑥⦌𝐵 = 𝐵)) |
| 3 | df-csb 3863 | . . 3 ⊢ ⦋𝑦 / 𝑥⦌𝐵 = {𝑧 ∣ [𝑦 / 𝑥]𝑧 ∈ 𝐵} | |
| 4 | sbcg 3826 | . . . . 5 ⊢ (𝑦 ∈ V → ([𝑦 / 𝑥]𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐵)) | |
| 5 | 4 | elv 3452 | . . . 4 ⊢ ([𝑦 / 𝑥]𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐵) |
| 6 | 5 | abbii 2796 | . . 3 ⊢ {𝑧 ∣ [𝑦 / 𝑥]𝑧 ∈ 𝐵} = {𝑧 ∣ 𝑧 ∈ 𝐵} |
| 7 | abid2 2865 | . . 3 ⊢ {𝑧 ∣ 𝑧 ∈ 𝐵} = 𝐵 | |
| 8 | 3, 6, 7 | 3eqtri 2756 | . 2 ⊢ ⦋𝑦 / 𝑥⦌𝐵 = 𝐵 |
| 9 | 2, 8 | vtoclg 3520 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {cab 2707 Vcvv 3447 [wsbc 3753 ⦋csb 3862 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-sbc 3754 df-csb 3863 |
| This theorem is referenced by: csbconstgi 3883 csb0 4373 sbcel1g 4379 sbceq1g 4380 sbcel2 4381 sbceq2g 4382 csbidm 4396 2nreu 4407 csbopg 4855 sbcbr 5162 sbcbr12g 5163 sbcbr1g 5164 sbcbr2g 5165 csbmpt12 5517 csbmpt2 5518 sbcrel 5743 csbcnvgALT 5848 csbres 5953 csbrn 6176 sbcfung 6540 csbfv12 6906 csbfv2g 6907 elfvmptrab 6997 csbov 7432 csbov12g 7433 csbov1g 7434 csbov2g 7435 csbfrecsg 8263 csbwrecsg 8297 csbwrdg 14509 gsummptif1n0 19896 coe1fzgsumdlem 22190 evl1gsumdlem 22243 opsbc2ie 32405 disjpreima 32513 esum2dlem 34082 csbrecsg 37316 csbrdgg 37317 csbmpo123 37319 f1omptsnlem 37324 relowlpssretop 37352 rdgeqoa 37358 csbfinxpg 37376 cdlemkid3N 40927 cdlemkid4 40928 cdlemk42 40935 minregex 43523 brtrclfv2 43716 cotrclrcl 43731 frege77 43929 onfrALTlem5 44532 onfrALTlem4 44533 onfrALTlem5VD 44874 onfrALTlem4VD 44875 csbsngVD 44882 csbxpgVD 44883 csbresgVD 44884 csbrngVD 44885 csbfv12gALTVD 44888 disjinfi 45186 eubrdm 47037 iccelpart 47434 |
| Copyright terms: Public domain | W3C validator |