![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csbconstg | Structured version Visualization version GIF version |
Description: Substitution doesn't affect a constant 𝐵 (in which 𝑥 does not occur). csbconstgf 3910 with distinct variable requirement. (Contributed by Alan Sare, 22-Jul-2012.) Avoid ax-12 2169. (Revised by Gino Giotto, 15-Oct-2024.) |
Ref | Expression |
---|---|
csbconstg | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbeq1 3895 | . . 3 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐵) | |
2 | 1 | eqeq1d 2732 | . 2 ⊢ (𝑦 = 𝐴 → (⦋𝑦 / 𝑥⦌𝐵 = 𝐵 ↔ ⦋𝐴 / 𝑥⦌𝐵 = 𝐵)) |
3 | df-csb 3893 | . . 3 ⊢ ⦋𝑦 / 𝑥⦌𝐵 = {𝑧 ∣ [𝑦 / 𝑥]𝑧 ∈ 𝐵} | |
4 | sbcg 3855 | . . . . 5 ⊢ (𝑦 ∈ V → ([𝑦 / 𝑥]𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐵)) | |
5 | 4 | elv 3478 | . . . 4 ⊢ ([𝑦 / 𝑥]𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐵) |
6 | 5 | abbii 2800 | . . 3 ⊢ {𝑧 ∣ [𝑦 / 𝑥]𝑧 ∈ 𝐵} = {𝑧 ∣ 𝑧 ∈ 𝐵} |
7 | abid2 2869 | . . 3 ⊢ {𝑧 ∣ 𝑧 ∈ 𝐵} = 𝐵 | |
8 | 3, 6, 7 | 3eqtri 2762 | . 2 ⊢ ⦋𝑦 / 𝑥⦌𝐵 = 𝐵 |
9 | 2, 8 | vtoclg 3541 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2104 {cab 2707 Vcvv 3472 [wsbc 3776 ⦋csb 3892 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-v 3474 df-sbc 3777 df-csb 3893 |
This theorem is referenced by: csbconstgi 3914 csb0 4406 sbcel1g 4412 sbceq1g 4413 sbcel2 4414 sbceq2g 4415 csbidm 4429 2nreu 4440 csbopg 4890 sbcbr 5202 sbcbr12g 5203 sbcbr1g 5204 sbcbr2g 5205 csbmpt12 5556 csbmpt2 5557 sbcrel 5779 csbcnvgALT 5883 csbres 5983 csbrn 6201 sbcfung 6571 csbfv12 6938 csbfv2g 6939 elfvmptrab 7025 csbov 7454 csbov12g 7455 csbov1g 7456 csbov2g 7457 csbfrecsg 8271 csbwrecsg 8308 csbwrdg 14498 gsummptif1n0 19875 coe1fzgsumdlem 22045 evl1gsumdlem 22095 opsbc2ie 31983 disjpreima 32082 esum2dlem 33388 csbrecsg 36512 csbrdgg 36513 csbmpo123 36515 f1omptsnlem 36520 relowlpssretop 36548 rdgeqoa 36554 csbfinxpg 36572 cdlemkid3N 40107 cdlemkid4 40108 cdlemk42 40115 minregex 42587 brtrclfv2 42780 cotrclrcl 42795 frege77 42993 onfrALTlem5 43605 onfrALTlem4 43606 onfrALTlem5VD 43948 onfrALTlem4VD 43949 csbsngVD 43956 csbxpgVD 43957 csbresgVD 43958 csbrngVD 43959 csbfv12gALTVD 43962 disjinfi 44189 eubrdm 46044 iccelpart 46399 |
Copyright terms: Public domain | W3C validator |