| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbconstg | Structured version Visualization version GIF version | ||
| Description: Substitution doesn't affect a constant 𝐵 (in which 𝑥 does not occur). csbconstgf 3897 with distinct variable requirement. (Contributed by Alan Sare, 22-Jul-2012.) Avoid ax-12 2178. (Revised by GG, 15-Oct-2024.) |
| Ref | Expression |
|---|---|
| csbconstg | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbeq1 3882 | . . 3 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐵) | |
| 2 | 1 | eqeq1d 2738 | . 2 ⊢ (𝑦 = 𝐴 → (⦋𝑦 / 𝑥⦌𝐵 = 𝐵 ↔ ⦋𝐴 / 𝑥⦌𝐵 = 𝐵)) |
| 3 | df-csb 3880 | . . 3 ⊢ ⦋𝑦 / 𝑥⦌𝐵 = {𝑧 ∣ [𝑦 / 𝑥]𝑧 ∈ 𝐵} | |
| 4 | sbcg 3843 | . . . . 5 ⊢ (𝑦 ∈ V → ([𝑦 / 𝑥]𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐵)) | |
| 5 | 4 | elv 3469 | . . . 4 ⊢ ([𝑦 / 𝑥]𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐵) |
| 6 | 5 | abbii 2803 | . . 3 ⊢ {𝑧 ∣ [𝑦 / 𝑥]𝑧 ∈ 𝐵} = {𝑧 ∣ 𝑧 ∈ 𝐵} |
| 7 | abid2 2873 | . . 3 ⊢ {𝑧 ∣ 𝑧 ∈ 𝐵} = 𝐵 | |
| 8 | 3, 6, 7 | 3eqtri 2763 | . 2 ⊢ ⦋𝑦 / 𝑥⦌𝐵 = 𝐵 |
| 9 | 2, 8 | vtoclg 3538 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {cab 2714 Vcvv 3464 [wsbc 3770 ⦋csb 3879 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-sbc 3771 df-csb 3880 |
| This theorem is referenced by: csbconstgi 3900 csb0 4390 sbcel1g 4396 sbceq1g 4397 sbcel2 4398 sbceq2g 4399 csbidm 4413 2nreu 4424 csbopg 4872 sbcbr 5179 sbcbr12g 5180 sbcbr1g 5181 sbcbr2g 5182 csbmpt12 5537 csbmpt2 5538 sbcrel 5764 csbcnvgALT 5869 csbres 5974 csbrn 6197 sbcfung 6565 csbfv12 6929 csbfv2g 6930 elfvmptrab 7020 csbov 7455 csbov12g 7456 csbov1g 7457 csbov2g 7458 csbfrecsg 8288 csbwrecsg 8325 csbwrdg 14567 gsummptif1n0 19952 coe1fzgsumdlem 22246 evl1gsumdlem 22299 opsbc2ie 32462 disjpreima 32570 esum2dlem 34128 csbrecsg 37351 csbrdgg 37352 csbmpo123 37354 f1omptsnlem 37359 relowlpssretop 37387 rdgeqoa 37393 csbfinxpg 37411 cdlemkid3N 40957 cdlemkid4 40958 cdlemk42 40965 minregex 43533 brtrclfv2 43726 cotrclrcl 43741 frege77 43939 onfrALTlem5 44542 onfrALTlem4 44543 onfrALTlem5VD 44884 onfrALTlem4VD 44885 csbsngVD 44892 csbxpgVD 44893 csbresgVD 44894 csbrngVD 44895 csbfv12gALTVD 44898 disjinfi 45196 eubrdm 47045 iccelpart 47427 |
| Copyright terms: Public domain | W3C validator |