| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbconstg | Structured version Visualization version GIF version | ||
| Description: Substitution doesn't affect a constant 𝐵 (in which 𝑥 does not occur). csbconstgf 3916 with distinct variable requirement. (Contributed by Alan Sare, 22-Jul-2012.) Avoid ax-12 2176. (Revised by GG, 15-Oct-2024.) |
| Ref | Expression |
|---|---|
| csbconstg | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbeq1 3901 | . . 3 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐵) | |
| 2 | 1 | eqeq1d 2738 | . 2 ⊢ (𝑦 = 𝐴 → (⦋𝑦 / 𝑥⦌𝐵 = 𝐵 ↔ ⦋𝐴 / 𝑥⦌𝐵 = 𝐵)) |
| 3 | df-csb 3899 | . . 3 ⊢ ⦋𝑦 / 𝑥⦌𝐵 = {𝑧 ∣ [𝑦 / 𝑥]𝑧 ∈ 𝐵} | |
| 4 | sbcg 3862 | . . . . 5 ⊢ (𝑦 ∈ V → ([𝑦 / 𝑥]𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐵)) | |
| 5 | 4 | elv 3484 | . . . 4 ⊢ ([𝑦 / 𝑥]𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐵) |
| 6 | 5 | abbii 2808 | . . 3 ⊢ {𝑧 ∣ [𝑦 / 𝑥]𝑧 ∈ 𝐵} = {𝑧 ∣ 𝑧 ∈ 𝐵} |
| 7 | abid2 2878 | . . 3 ⊢ {𝑧 ∣ 𝑧 ∈ 𝐵} = 𝐵 | |
| 8 | 3, 6, 7 | 3eqtri 2768 | . 2 ⊢ ⦋𝑦 / 𝑥⦌𝐵 = 𝐵 |
| 9 | 2, 8 | vtoclg 3553 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝐵 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1539 ∈ wcel 2107 {cab 2713 Vcvv 3479 [wsbc 3787 ⦋csb 3898 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-v 3481 df-sbc 3788 df-csb 3899 |
| This theorem is referenced by: csbconstgi 3919 csb0 4409 sbcel1g 4415 sbceq1g 4416 sbcel2 4417 sbceq2g 4418 csbidm 4432 2nreu 4443 csbopg 4890 sbcbr 5197 sbcbr12g 5198 sbcbr1g 5199 sbcbr2g 5200 csbmpt12 5561 csbmpt2 5562 sbcrel 5789 csbcnvgALT 5894 csbres 5999 csbrn 6222 sbcfung 6589 csbfv12 6953 csbfv2g 6954 elfvmptrab 7044 csbov 7477 csbov12g 7478 csbov1g 7479 csbov2g 7480 csbfrecsg 8310 csbwrecsg 8347 csbwrdg 14583 gsummptif1n0 19985 coe1fzgsumdlem 22308 evl1gsumdlem 22361 opsbc2ie 32496 disjpreima 32598 esum2dlem 34094 csbrecsg 37330 csbrdgg 37331 csbmpo123 37333 f1omptsnlem 37338 relowlpssretop 37366 rdgeqoa 37372 csbfinxpg 37390 cdlemkid3N 40936 cdlemkid4 40937 cdlemk42 40944 minregex 43552 brtrclfv2 43745 cotrclrcl 43760 frege77 43958 onfrALTlem5 44567 onfrALTlem4 44568 onfrALTlem5VD 44910 onfrALTlem4VD 44911 csbsngVD 44918 csbxpgVD 44919 csbresgVD 44920 csbrngVD 44921 csbfv12gALTVD 44924 disjinfi 45202 eubrdm 47053 iccelpart 47425 |
| Copyright terms: Public domain | W3C validator |