Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > csbconstgi | Structured version Visualization version GIF version |
Description: The proper substitution of a class for a variable in another variable does not modify it, in inference form. (Contributed by Giovanni Mascellani, 30-May-2019.) |
Ref | Expression |
---|---|
csbconstgi.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
csbconstgi | ⊢ ⦋𝐴 / 𝑥⦌𝑦 = 𝑦 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbconstgi.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | csbconstg 3851 | . 2 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝑦 = 𝑦) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ⦋𝐴 / 𝑥⦌𝑦 = 𝑦 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 Vcvv 3432 ⦋csb 3832 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-sbc 3717 df-csb 3833 |
This theorem is referenced by: sbcop 5403 sbccom2lem 36282 |
Copyright terms: Public domain | W3C validator |