| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbconstgi | Structured version Visualization version GIF version | ||
| Description: The proper substitution of a class for a variable in another variable does not modify it, in inference form. (Contributed by Giovanni Mascellani, 30-May-2019.) |
| Ref | Expression |
|---|---|
| csbconstgi.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| csbconstgi | ⊢ ⦋𝐴 / 𝑥⦌𝑦 = 𝑦 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbconstgi.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | csbconstg 3893 | . 2 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝑦 = 𝑦) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ⦋𝐴 / 𝑥⦌𝑦 = 𝑦 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 Vcvv 3459 ⦋csb 3874 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-sbc 3766 df-csb 3875 |
| This theorem is referenced by: sbcop 5464 sbccom2lem 38148 |
| Copyright terms: Public domain | W3C validator |