Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > csbconstgi | Structured version Visualization version GIF version |
Description: The proper substitution of a class for a variable in another variable does not modify it, in inference form. (Contributed by Giovanni Mascellani, 30-May-2019.) |
Ref | Expression |
---|---|
csbconstgi.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
csbconstgi | ⊢ ⦋𝐴 / 𝑥⦌𝑦 = 𝑦 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbconstgi.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | csbconstg 3830 | . 2 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝑦 = 𝑦) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ⦋𝐴 / 𝑥⦌𝑦 = 𝑦 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1543 ∈ wcel 2110 Vcvv 3408 ⦋csb 3811 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1546 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-v 3410 df-sbc 3695 df-csb 3812 |
This theorem is referenced by: sbcop 5372 sbccom2lem 36019 |
Copyright terms: Public domain | W3C validator |