| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbconstgi | Structured version Visualization version GIF version | ||
| Description: The proper substitution of a class for a variable in another variable does not modify it, in inference form. (Contributed by Giovanni Mascellani, 30-May-2019.) |
| Ref | Expression |
|---|---|
| csbconstgi.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| csbconstgi | ⊢ ⦋𝐴 / 𝑥⦌𝑦 = 𝑦 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbconstgi.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | csbconstg 3867 | . 2 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝑦 = 𝑦) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ⦋𝐴 / 𝑥⦌𝑦 = 𝑦 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2110 Vcvv 3434 ⦋csb 3848 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3436 df-sbc 3740 df-csb 3849 |
| This theorem is referenced by: sbcop 5427 sbccom2lem 38143 |
| Copyright terms: Public domain | W3C validator |