MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbconstgi Structured version   Visualization version   GIF version

Theorem csbconstgi 3850
Description: The proper substitution of a class for a variable in another variable does not modify it, in inference form. (Contributed by Giovanni Mascellani, 30-May-2019.)
Hypothesis
Ref Expression
csbconstgi.1 𝐴 ∈ V
Assertion
Ref Expression
csbconstgi 𝐴 / 𝑥𝑦 = 𝑦
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)

Proof of Theorem csbconstgi
StepHypRef Expression
1 csbconstgi.1 . 2 𝐴 ∈ V
2 csbconstg 3847 . 2 (𝐴 ∈ V → 𝐴 / 𝑥𝑦 = 𝑦)
31, 2ax-mp 5 1 𝐴 / 𝑥𝑦 = 𝑦
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2108  Vcvv 3422  csb 3828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-sbc 3712  df-csb 3829
This theorem is referenced by:  sbcop  5397  sbccom2lem  36209
  Copyright terms: Public domain W3C validator