MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbgfi Structured version   Visualization version   GIF version

Theorem csbgfi 3853
Description: Substitution for a variable not free in a class does not affect it, in inference form. (Contributed by Giovanni Mascellani, 4-Jun-2019.)
Hypotheses
Ref Expression
csbgfi.1 𝐴 ∈ V
csbgfi.2 𝑥𝐵
Assertion
Ref Expression
csbgfi 𝐴 / 𝑥𝐵 = 𝐵

Proof of Theorem csbgfi
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-csb 3833 . . . 4 𝐴 / 𝑥𝐵 = {𝑦[𝐴 / 𝑥]𝑦𝐵}
21abeq2i 2875 . . 3 (𝑦𝐴 / 𝑥𝐵[𝐴 / 𝑥]𝑦𝐵)
3 csbgfi.1 . . . 4 𝐴 ∈ V
4 csbgfi.2 . . . . 5 𝑥𝐵
54nfcri 2894 . . . 4 𝑥 𝑦𝐵
63, 5sbcgfi 3797 . . 3 ([𝐴 / 𝑥]𝑦𝐵𝑦𝐵)
72, 6bitri 274 . 2 (𝑦𝐴 / 𝑥𝐵𝑦𝐵)
87eqriv 2735 1 𝐴 / 𝑥𝐵 = 𝐵
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2106  wnfc 2887  Vcvv 3432  [wsbc 3716  csb 3832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-sbc 3717  df-csb 3833
This theorem is referenced by:  fmptdF  30993  sbccom2f  36284
  Copyright terms: Public domain W3C validator