| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfcsb1d | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for substitution into a class. (Contributed by Mario Carneiro, 12-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfcsb1d.1 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
| Ref | Expression |
|---|---|
| nfcsb1d | ⊢ (𝜑 → Ⅎ𝑥⦋𝐴 / 𝑥⦌𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-csb 3880 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} | |
| 2 | nfv 1913 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
| 3 | nfcsb1d.1 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
| 4 | 3 | nfsbc1d 3788 | . . 3 ⊢ (𝜑 → Ⅎ𝑥[𝐴 / 𝑥]𝑦 ∈ 𝐵) |
| 5 | 2, 4 | nfabdw 2919 | . 2 ⊢ (𝜑 → Ⅎ𝑥{𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵}) |
| 6 | 1, 5 | nfcxfrd 2896 | 1 ⊢ (𝜑 → Ⅎ𝑥⦋𝐴 / 𝑥⦌𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 {cab 2712 Ⅎwnfc 2882 [wsbc 3770 ⦋csb 3879 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-sbc 3771 df-csb 3880 |
| This theorem is referenced by: nfcsb1 3902 riotaeqimp 7396 |
| Copyright terms: Public domain | W3C validator |