MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfcsb1d Structured version   Visualization version   GIF version

Theorem nfcsb1d 3869
Description: Bound-variable hypothesis builder for substitution into a class. (Contributed by Mario Carneiro, 12-Oct-2016.)
Hypothesis
Ref Expression
nfcsb1d.1 (𝜑𝑥𝐴)
Assertion
Ref Expression
nfcsb1d (𝜑𝑥𝐴 / 𝑥𝐵)

Proof of Theorem nfcsb1d
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-csb 3848 . 2 𝐴 / 𝑥𝐵 = {𝑦[𝐴 / 𝑥]𝑦𝐵}
2 nfv 1915 . . 3 𝑦𝜑
3 nfcsb1d.1 . . . 4 (𝜑𝑥𝐴)
43nfsbc1d 3756 . . 3 (𝜑 → Ⅎ𝑥[𝐴 / 𝑥]𝑦𝐵)
52, 4nfabdw 2918 . 2 (𝜑𝑥{𝑦[𝐴 / 𝑥]𝑦𝐵})
61, 5nfcxfrd 2895 1 (𝜑𝑥𝐴 / 𝑥𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2113  {cab 2711  wnfc 2881  [wsbc 3738  csb 3847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-sbc 3739  df-csb 3848
This theorem is referenced by:  nfcsb1  3870  riotaeqimp  7338
  Copyright terms: Public domain W3C validator