| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfcsb1d | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for substitution into a class. (Contributed by Mario Carneiro, 12-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfcsb1d.1 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
| Ref | Expression |
|---|---|
| nfcsb1d | ⊢ (𝜑 → Ⅎ𝑥⦋𝐴 / 𝑥⦌𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-csb 3866 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} | |
| 2 | nfv 1914 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
| 3 | nfcsb1d.1 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
| 4 | 3 | nfsbc1d 3774 | . . 3 ⊢ (𝜑 → Ⅎ𝑥[𝐴 / 𝑥]𝑦 ∈ 𝐵) |
| 5 | 2, 4 | nfabdw 2914 | . 2 ⊢ (𝜑 → Ⅎ𝑥{𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵}) |
| 6 | 1, 5 | nfcxfrd 2891 | 1 ⊢ (𝜑 → Ⅎ𝑥⦋𝐴 / 𝑥⦌𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 {cab 2708 Ⅎwnfc 2877 [wsbc 3756 ⦋csb 3865 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-sbc 3757 df-csb 3866 |
| This theorem is referenced by: nfcsb1 3888 riotaeqimp 7373 |
| Copyright terms: Public domain | W3C validator |