MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfcsb1d Structured version   Visualization version   GIF version

Theorem nfcsb1d 3851
Description: Bound-variable hypothesis builder for substitution into a class. (Contributed by Mario Carneiro, 12-Oct-2016.)
Hypothesis
Ref Expression
nfcsb1d.1 (𝜑𝑥𝐴)
Assertion
Ref Expression
nfcsb1d (𝜑𝑥𝐴 / 𝑥𝐵)

Proof of Theorem nfcsb1d
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-csb 3829 . 2 𝐴 / 𝑥𝐵 = {𝑦[𝐴 / 𝑥]𝑦𝐵}
2 nfv 1918 . . 3 𝑦𝜑
3 nfcsb1d.1 . . . 4 (𝜑𝑥𝐴)
43nfsbc1d 3729 . . 3 (𝜑 → Ⅎ𝑥[𝐴 / 𝑥]𝑦𝐵)
52, 4nfabdw 2929 . 2 (𝜑𝑥{𝑦[𝐴 / 𝑥]𝑦𝐵})
61, 5nfcxfrd 2905 1 (𝜑𝑥𝐴 / 𝑥𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  {cab 2715  wnfc 2886  [wsbc 3711  csb 3828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-sbc 3712  df-csb 3829
This theorem is referenced by:  nfcsb1  3852  riotaeqimp  7239
  Copyright terms: Public domain W3C validator