Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfcsb1d | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for substitution into a class. (Contributed by Mario Carneiro, 12-Oct-2016.) |
Ref | Expression |
---|---|
nfcsb1d.1 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
Ref | Expression |
---|---|
nfcsb1d | ⊢ (𝜑 → Ⅎ𝑥⦋𝐴 / 𝑥⦌𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-csb 3833 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} | |
2 | nfv 1917 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
3 | nfcsb1d.1 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
4 | 3 | nfsbc1d 3734 | . . 3 ⊢ (𝜑 → Ⅎ𝑥[𝐴 / 𝑥]𝑦 ∈ 𝐵) |
5 | 2, 4 | nfabdw 2930 | . 2 ⊢ (𝜑 → Ⅎ𝑥{𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵}) |
6 | 1, 5 | nfcxfrd 2906 | 1 ⊢ (𝜑 → Ⅎ𝑥⦋𝐴 / 𝑥⦌𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 {cab 2715 Ⅎwnfc 2887 [wsbc 3716 ⦋csb 3832 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-sbc 3717 df-csb 3833 |
This theorem is referenced by: nfcsb1 3856 riotaeqimp 7259 |
Copyright terms: Public domain | W3C validator |